These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10562526)

  • 1. Large-amplitude undulatory fish swimming: fluid mechanics coupled to internal mechanics.
    Pedley TJ; Hill SJ
    J Exp Biol; 1999 Dec; 202(Pt 23):3431-8. PubMed ID: 10562526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure.
    Cheng JY; Chahine GL
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Dec; 131(1):51-60. PubMed ID: 11733166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fish-inspired segment models for undulatory steady swimming.
    Akanyeti O; Di Santo V; Goerig E; Wainwright DK; Liao JC; Castro-Santos T; Lauder GV
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35487201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental-numerical method for calculating bending moments in swimming fish shows that fish larvae control undulatory swimming with simple actuation.
    Voesenek CJ; Li G; Muijres FT; van Leeuwen JL
    PLoS Biol; 2020 Jul; 18(7):e3000462. PubMed ID: 32697779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry.
    Akanyeti O; Putney J; Yanagitsuru YR; Lauder GV; Stewart WJ; Liao JC
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13828-13833. PubMed ID: 29229818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D computational models explain muscle activation patterns and energetic functions of internal structures in fish swimming.
    Ming T; Jin B; Song J; Luo H; Du R; Ding Y
    PLoS Comput Biol; 2019 Sep; 15(9):e1006883. PubMed ID: 31487282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fish swimming: patterns in muscle function.
    Altringham JD; Ellerby DJ
    J Exp Biol; 1999 Dec; 202(Pt 23):3397-403. PubMed ID: 10562522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait.
    Liao JC
    J Exp Biol; 2004 Sep; 207(Pt 20):3495-506. PubMed ID: 15339945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime.
    Müller UK; van den Boogaart JG; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):196-205. PubMed ID: 18165247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical insights into optimality and resonance in fish swimming.
    Kohannim S; Iwasaki T
    J R Soc Interface; 2014 Mar; 11(92):20131073. PubMed ID: 24430125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airfoil-like mechanics generate thrust on the anterior body of swimming fishes.
    Lucas KN; Lauder GV; Tytell ED
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10585-10592. PubMed ID: 32341168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers.
    Drucker EG; Lauder GV
    J Exp Biol; 2000 Aug; 203(Pt 16):2379-93. PubMed ID: 10903153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of a biologically inspired robotic fish driven by compliant parts.
    El Daou H; Salumäe T; Chambers LD; Megill WM; Kruusmaa M
    Bioinspir Biomim; 2014 Mar; 9(1):016010. PubMed ID: 24451164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hydrodynamics of eel swimming: I. Wake structure.
    Tytell ED; Lauder GV
    J Exp Biol; 2004 May; 207(Pt 11):1825-41. PubMed ID: 15107438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'Optimal' vortex rings and aquatic propulsion mechanisms.
    Linden PF; Turner JS
    Proc Biol Sci; 2004 Mar; 271(1539):647-53. PubMed ID: 15156924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexibility is a hidden axis of biomechanical diversity in fishes.
    Jimenez YE; Lucas KN; Long JH; Tytell ED
    J Exp Biol; 2023 Apr; 226(Suppl_1):. PubMed ID: 37086034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulations of undulatory swimming at moderate Reynolds number.
    Eldredge JD
    Bioinspir Biomim; 2006 Dec; 1(4):S19-24. PubMed ID: 17671314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.