BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 10562641)

  • 1. Exercise training improves endothelium-mediated vasorelaxation after chronic coronary occlusion.
    Griffin KL; Laughlin MH; Parker JL
    J Appl Physiol (1985); 1999 Nov; 87(5):1948-56. PubMed ID: 10562641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training.
    Griffin KL; Woodman CR; Price EM; Laughlin MH; Parker JL
    Circulation; 2001 Sep; 104(12):1393-8. PubMed ID: 11560855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of exercise training on cellular mechanisms of endothelial nitric oxide synthase regulation in coronary arteries after chronic occlusion.
    Zhou M; Widmer RJ; Xie W; Jimmy Widmer A; Miller MW; Schroeder F; Parker JL; Heaps CL
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1857-69. PubMed ID: 20363881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic nitric oxide synthase inhibition blunts endothelium-dependent function of conduit coronary arteries, not arterioles.
    Ingram DG; Newcomer SC; Price EM; Eklund KE; McAllister RM; Laughlin MH
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2798-808. PubMed ID: 17259441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise training enhances multiple mechanisms of relaxation in coronary arteries from ischemic hearts.
    Deer RR; Heaps CL
    Am J Physiol Heart Circ Physiol; 2013 Nov; 305(9):H1321-31. PubMed ID: 23997097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of endothelium-dependent relaxation in canine coronary collateral arteries.
    Rapps JA; Myers PR; Zhong Q; Parker JL
    Circulation; 1998 Oct; 98(16):1675-83. PubMed ID: 9778334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise training restores coronary arteriolar dilation to NOS activation distal to coronary artery occlusion: role of hydrogen peroxide.
    Thengchaisri N; Shipley R; Ren Y; Parker J; Kuo L
    Arterioscler Thromb Vasc Biol; 2007 Apr; 27(4):791-8. PubMed ID: 17234725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise training enhances vasodilation responses to vascular endothelial growth factor in porcine coronary arterioles exposed to chronic coronary occlusion.
    Fogarty JA; Muller-Delp JM; Delp MD; Mattox ML; Laughlin MH; Parker JL
    Circulation; 2004 Feb; 109(5):664-70. PubMed ID: 14769688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic exercise training improves ACh-induced vasorelaxation in pulmonary arteries of pigs.
    Johnson LR; Parker JL; Laughlin MH
    J Appl Physiol (1985); 2000 Feb; 88(2):443-51. PubMed ID: 10658009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasodilator responses of coronary resistance arteries of exercise-trained pigs.
    Muller JM; Myers PR; Laughlin MH
    Circulation; 1994 May; 89(5):2308-14. PubMed ID: 8181157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of exercise training on nitric oxide and superoxide/H₂O₂ signaling pathways in collateral-dependent porcine coronary arterioles.
    Xie W; Parker JL; Heaps CL
    J Appl Physiol (1985); 2012 May; 112(9):1546-55. PubMed ID: 22323648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise training restores adenosine-induced relaxation in coronary arteries distal to chronic occlusion.
    Heaps CL; Sturek M; Rapps JA; Laughlin MH; Parker JL
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H1984-92. PubMed ID: 10843897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered reactivity of coronary arteries located distal to a chronic coronary occlusion.
    Rapps JA; Sturek M; Jones AW; Parker JL
    Am J Physiol; 1997 Oct; 273(4):H1879-87. PubMed ID: 9362256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise training-induced adaptations in mediators of sustained endothelium-dependent coronary artery relaxation in a porcine model of ischemic heart disease.
    Heaps CL; Robles JC; Sarin V; Mattox ML; Parker JL
    Microcirculation; 2014 Jul; 21(5):388-400. PubMed ID: 24447072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise training preserves endothelium-dependent relaxation in brachial arteries from hyperlipidemic pigs.
    Woodman CR; Turk JR; Williams DP; Laughlin MH
    J Appl Physiol (1985); 2003 May; 94(5):2017-26. PubMed ID: 12679352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear stress-induced vasodilation in porcine coronary conduit arteries is independent of nitric oxide release.
    Dube S; Canty JM
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2581-90. PubMed ID: 11356613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic FGF enhances endothelium-dependent relaxation of the collateral-perfused coronary microcirculation.
    Sellke FW; Wang SY; Friedman M; Harada K; Edelman ER; Grossman W; Simons M
    Am J Physiol; 1994 Oct; 267(4 Pt 2):H1303-11. PubMed ID: 7943375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+ sensitization and PKC contribute to exercise training-enhanced contractility in porcine collateral-dependent coronary arteries.
    Robles JC; Sturek M; Parker JL; Heaps CL
    Am J Physiol Heart Circ Physiol; 2011 Apr; 300(4):H1201-9. PubMed ID: 21297028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelium-mediated control of coronary vascular tone after chronic exercise training.
    Laughlin MH
    Med Sci Sports Exerc; 1995 Aug; 27(8):1135-44. PubMed ID: 7476057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelium-dependent relaxation and hyperpolarization evoked by bradykinin in canine coronary arteries: enhancement by exercise-training.
    Mombouli JV; Nakashima M; Hamra M; Vanhoutte PM
    Br J Pharmacol; 1996 Feb; 117(3):413-418. PubMed ID: 8821528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.