BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 10563013)

  • 21. A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution.
    Bielawski JP; Yang Z
    J Mol Evol; 2004 Jul; 59(1):121-32. PubMed ID: 15383915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synonymous substitutions substantially improve evolutionary inference from highly diverged proteins.
    Seo TK; Kishino H
    Syst Biol; 2008 Jun; 57(3):367-77. PubMed ID: 18570032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Statistical properties of the branch-site test of positive selection.
    Yang Z; dos Reis M
    Mol Biol Evol; 2011 Mar; 28(3):1217-28. PubMed ID: 21087944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes.
    Yang Z; Swanson WJ
    Mol Biol Evol; 2002 Jan; 19(1):49-57. PubMed ID: 11752189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of positive selection in genes is greatly improved by using experimentally informed site-specific models.
    Bloom JD
    Biol Direct; 2017 Jan; 12(1):1. PubMed ID: 28095902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequent false detection of positive selection by the likelihood method with branch-site models.
    Zhang J
    Mol Biol Evol; 2004 Jul; 21(7):1332-9. PubMed ID: 15014150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superiority of a mechanistic codon substitution model even for protein sequences in phylogenetic analysis.
    Miyazawa S
    BMC Evol Biol; 2013 Nov; 13():257. PubMed ID: 24256155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular evolution of nuclear genes in Cupressacea, a group of conifer trees.
    Kusumi J; Tsumura Y; Yoshimaru H; Tachida H
    Mol Biol Evol; 2002 May; 19(5):736-47. PubMed ID: 11961107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detecting positive and purifying selection at synonymous sites in yeast and worm.
    Zhou T; Gu W; Wilke CO
    Mol Biol Evol; 2010 Aug; 27(8):1912-22. PubMed ID: 20231333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bayesian estimation of positively selected sites.
    Huelsenbeck JP; Dyer KA
    J Mol Evol; 2004 Jun; 58(6):661-72. PubMed ID: 15461423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistical properties of the methods for detecting positively selected amino acid sites.
    Suzuki Y
    Gene; 2006 Jan; 365():125-9. PubMed ID: 16256279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Codon Usage Selection Can Bias Estimation of the Fraction of Adaptive Amino Acid Fixations.
    Matsumoto T; John A; Baeza-Centurion P; Li B; Akashi H
    Mol Biol Evol; 2016 Jun; 33(6):1580-9. PubMed ID: 26873577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detecting amino acid sites under positive selection and purifying selection.
    Massingham T; Goldman N
    Genetics; 2005 Mar; 169(3):1753-62. PubMed ID: 15654091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. False-positive selection identified by ML-based methods: examples from the Sig1 gene of the diatom Thalassiosira weissflogii and the tax gene of a human T-cell lymphotropic virus.
    Suzuki Y; Nei M
    Mol Biol Evol; 2004 May; 21(5):914-21. PubMed ID: 15014169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methods for incorporating the hypermutability of CpG dinucleotides in detecting natural selection operating at the amino acid sequence level.
    Suzuki Y; Gojobori T; Kumar S
    Mol Biol Evol; 2009 Oct; 26(10):2275-84. PubMed ID: 19581348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extensive purifying selection acting on synonymous sites in HIV-1 Group M sequences.
    Ngandu NK; Scheffler K; Moore P; Woodman Z; Martin D; Seoighe C
    Virol J; 2008 Dec; 5():160. PubMed ID: 19105834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reliabilities of identifying positive selection by the branch-site and the site-prediction methods.
    Nozawa M; Suzuki Y; Nei M
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6700-5. PubMed ID: 19339501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary distances for protein-coding sequences: modeling site-specific residue frequencies.
    Halpern AL; Bruno WJ
    Mol Biol Evol; 1998 Jul; 15(7):910-7. PubMed ID: 9656490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of codon usage preference in hemagglutinin genes of the swine-origin influenza A (H1N1) virus.
    Wang SF; Su MW; Tseng SP; Li MC; Tsao CH; Huang SW; Chu WC; Liu WT; Chen YM; Huang JC
    J Microbiol Immunol Infect; 2016 Aug; 49(4):477-86. PubMed ID: 25442859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular evolution of the major capsid protein VP1 of enterovirus 70.
    Takeda N; Tanimura M; Miyamura K
    J Virol; 1994 Feb; 68(2):854-62. PubMed ID: 8289388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.