BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 10563813)

  • 41. Characterization of a sulfur-regulated oxygenative alkylsulfatase from Pseudomonas putida S-313.
    Kahnert A; Kertesz MA
    J Biol Chem; 2000 Oct; 275(41):31661-7. PubMed ID: 10913158
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nuclear Resonance Vibrational Spectroscopic Definition of the Facial Triad Fe
    Srnec M; Iyer SR; Dassama LMK; Park K; Wong SD; Sutherlin KD; Yoda Y; Kobayashi Y; Kurokuzu M; Saito M; Seto M; Krebs C; Bollinger JM; Solomon EI
    J Am Chem Soc; 2020 Nov; 142(44):18886-18896. PubMed ID: 33103886
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spectroscopic studies of the mononuclear non-heme Fe(II) enzyme FIH: second-sphere contributions to reactivity.
    Light KM; Hangasky JA; Knapp MJ; Solomon EI
    J Am Chem Soc; 2013 Jul; 135(26):9665-74. PubMed ID: 23742069
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strongly Coupled Redox-Linked Conformational Switching at the Active Site of the Non-Heme Iron-Dependent Dioxygenase, TauD.
    John CW; Swain GM; Hausinger RP; Proshlyakov DA
    J Phys Chem B; 2019 Sep; 123(37):7785-7793. PubMed ID: 31433947
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural Origin of the Large Redox-Linked Reorganization in the 2-Oxoglutarate Dependent Oxygenase, TauD.
    John CW; Hausinger RP; Proshlyakov DA
    J Am Chem Soc; 2019 Sep; 141(38):15318-15326. PubMed ID: 31475523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. (4-Hydroxyphenyl)pyruvate dioxygenase from Streptomyces avermitilis: the basis for ordered substrate addition.
    Johnson-Winters K; Purpero VM; Kavana M; Nelson T; Moran GR
    Biochemistry; 2003 Feb; 42(7):2072-80. PubMed ID: 12590595
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative quantum mechanics/molecular mechanics (QM/MM) and density functional theory calculations on the oxo-iron species of taurine/alpha-ketoglutarate dioxygenase.
    Godfrey E; Porro CS; de Visser SP
    J Phys Chem A; 2008 Mar; 112(11):2464-8. PubMed ID: 18237159
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electronic structure analysis of the oxygen-activation mechanism by Fe(II)- and α-ketoglutarate (αKG)-dependent dioxygenases.
    Ye S; Riplinger C; Hansen A; Krebs C; Bollinger JM; Neese F
    Chemistry; 2012 May; 18(21):6555-67. PubMed ID: 22511515
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure of a Ferryl Mimic in the Archetypal Iron(II)- and 2-(Oxo)-glutarate-Dependent Dioxygenase, TauD.
    Davis KM; Altmyer M; Martinie RJ; Schaperdoth I; Krebs C; Bollinger JM; Boal AK
    Biochemistry; 2019 Oct; 58(41):4218-4223. PubMed ID: 31503454
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Substrate Promotes Productive Gas Binding in the α-Ketoglutarate-Dependent Oxygenase FIH.
    Taabazuing CY; Fermann J; Garman S; Knapp MJ
    Biochemistry; 2016 Jan; 55(2):277-86. PubMed ID: 26727884
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An active-site phenylalanine directs substrate binding and C-H cleavage in the alpha-ketoglutarate-dependent dioxygenase TauD.
    McCusker KP; Klinman JP
    J Am Chem Soc; 2010 Apr; 132(14):5114-20. PubMed ID: 20302299
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Replacement of non-heme Fe(II) with Cu(II) in the alpha-ketoglutarate dependent DNA repair enzyme AlkB: spectroscopic characterization of the active site.
    Bleijlevens B; Shivarattan T; Sedgwick B; Rigby SE; Matthews SJ
    J Inorg Biochem; 2007 Jul; 101(7):1043-8. PubMed ID: 17553567
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigations on the role of a solvent tunnel in the α-ketoglutarate dependent oxygenase factor inhibiting HIF (FIH).
    Chaplin VD; Valliere MA; Hangasky JA; Knapp MJ
    J Inorg Biochem; 2018 Jan; 178():63-69. PubMed ID: 29078149
    [TBL] [Abstract][Full Text] [Related]  

  • 54. FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes.
    Hausinger RP
    Crit Rev Biochem Mol Biol; 2004; 39(1):21-68. PubMed ID: 15121720
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stalking intermediates in oxygen activation by iron enzymes: motivation and method.
    Bollinger JM; Krebs C
    J Inorg Biochem; 2006 Apr; 100(4):586-605. PubMed ID: 16513177
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Single-Turnover Kinetic Study of DNA Demethylation Catalyzed by Fe(II)/α-Ketoglutarate-Dependent Dioxygenase AlkB.
    Kanazhevskaya LY; Alekseeva IV; Fedorova OS
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31847292
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Harnessing Fe(II)/α-ketoglutarate-dependent oxygenases for structural diversification of fungal meroterpenoids.
    Tao H; Abe I
    Curr Opin Biotechnol; 2022 Oct; 77():102763. PubMed ID: 35878474
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural basis for the enantiospecificities of R- and S-specific phenoxypropionate/alpha-ketoglutarate dioxygenases.
    Müller TA; Zavodszky MI; Feig M; Kuhn LA; Hausinger RP
    Protein Sci; 2006 Jun; 15(6):1356-68. PubMed ID: 16731970
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of a concerted vs. sequential oxygen activation mechanism in α-ketoglutarate-dependent nonheme ferrous enzymes.
    Goudarzi S; Iyer SR; Babicz JT; Yan JJ; Peters GHJ; Christensen HEM; Hedman B; Hodgson KO; Solomon EI
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5152-5159. PubMed ID: 32094179
    [TBL] [Abstract][Full Text] [Related]  

  • 60. X-ray absorption spectroscopic analysis of Fe(II) and Cu(II) forms of a herbicide-degrading alpha-ketoglutarate dioxygenase.
    Cosper NJ; Stålhandske CM; Saari RE; Hausinger RP; Scott RA
    J Biol Inorg Chem; 1999 Feb; 4(1):122-9. PubMed ID: 10499109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.