These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 10563853)

  • 1. Lipid characterization in vegetative tissues of high saturated fatty acid sunflower mutants.
    Cantisán S; Martínez-Force E; Alvarez-Ortega R; Garcés R
    J Agric Food Chem; 1999 Jan; 47(1):78-82. PubMed ID: 10563853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of polar and nonpolar seed lipid classes from highly saturated fatty acid sunflower mutants.
    Alvarez-Ortega R; Cantisán S; Martínez-Force E; Garcés R
    Lipids; 1997 Aug; 32(8):833-7. PubMed ID: 9270974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid characterization of seed oils from high-palmitic, low-palmitoleic, and very high-stearic acid sunflower lines.
    Serrano-Vega MJ; Martínez-Force E; Garcés R
    Lipids; 2005 Apr; 40(4):369-74. PubMed ID: 16028719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of triacylglycerol species during seed germination in fatty acid sunflower (Helianthus annuus) mutants.
    Fernández-Moya V; Martínez-Force E; Garcés R
    J Agric Food Chem; 2000 Mar; 48(3):770-4. PubMed ID: 10725147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-related non-homogeneous fatty acid desaturation in sunflower (Helianthus annuus L.) seeds.
    Fernández-Moya V; Martínez-Force E; Garcés R
    Planta; 2003 Mar; 216(5):834-40. PubMed ID: 12624771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitors of fatty acid biosynthesis in sunflower seeds.
    Pleite R; Martínez-Force E; Garcés R
    J Plant Physiol; 2006 Sep; 163(9):885-94. PubMed ID: 16500723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase of the stearic acid content in high-oleic sunflower (Helianthus annuus) seeds.
    Pleite R; Martínez-Force E; Garcés R
    J Agric Food Chem; 2006 Dec; 54(25):9383-8. PubMed ID: 17147422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid characterization of a high-stearic sunflower mutant displaying a seed stearic acid gradient.
    Fernandez-Moya V; Martínez-Force E; Garcés R
    J Agric Food Chem; 2006 May; 54(10):3612-6. PubMed ID: 19127733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oils from improved high stearic acid sunflower seeds.
    Fernández-Moya V; Martínez-Force E; Garcés R
    J Agric Food Chem; 2005 Jun; 53(13):5326-30. PubMed ID: 15969513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature effect on a high stearic acid sunflower mutant.
    Fernández-Moya V; Martínez-Force E; Garcés R
    Phytochemistry; 2002 Jan; 59(1):33-7. PubMed ID: 11754941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid characterization of a wrinkled sunflower mutant.
    Venegas-Calerón M; Martínez-Force E; Garcés R
    Phytochemistry; 2008 Feb; 69(3):684-91. PubMed ID: 18006027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds.
    Martínez-Force E; Cantisán S; Serrano-Vega MJ; Garcés R
    Planta; 2000 Oct; 211(5):673-8. PubMed ID: 11089680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities.
    Aznar-Moreno JA; Venegas-Calerón M; Martínez-Force E; Garcés R; Salas JJ
    Planta; 2016 Aug; 244(2):479-90. PubMed ID: 27095109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic possibilities for altering sunflower oil quality to obtain novel oils.
    Skorić D; Jocić S; Sakac Z; Lecić N
    Can J Physiol Pharmacol; 2008 Apr; 86(4):215-21. PubMed ID: 18418432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of triacylglycerol species from high-saturated sunflower (Helianthus annuus) mutants.
    Fernández-Moya V; Martínez-Force E; Garcés R
    J Agric Food Chem; 2000 Mar; 48(3):764-9. PubMed ID: 10725146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature effect on triacylglycerol species in seed oil from high stearic sunflower lines with different genetic backgrounds.
    Izquierdo NG; Martínez-Force E; Garcés R; Aguirrezábal LA; Zambelli A; Reid R
    J Sci Food Agric; 2016 Oct; 96(13):4367-76. PubMed ID: 26804723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analysis of the high stearic acid content in sunflower mutant CAS-14.
    Pérez-Vich B; Leon AJ; Grondona M; Velasco L; Fernández-Martínez JM
    Theor Appl Genet; 2006 Mar; 112(5):867-75. PubMed ID: 16362273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic control analysis of de novo sunflower fatty acid biosynthesis.
    Martínez-Force E; Garcés R
    Biochem Soc Trans; 2000 Dec; 28(6):669-71. PubMed ID: 11171164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2 encoding β-ketoacyl-ACP synthase II (KASII).
    Liu Q; Wu M; Zhang B; Shrestha P; Petrie J; Green AG; Singh SP
    Plant Biotechnol J; 2017 Jan; 15(1):132-143. PubMed ID: 27381745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.
    González-Thuillier I; Venegas-Calerón M; Sánchez R; Garcés R; von Wettstein-Knowles P; Martínez-Force E
    Planta; 2016 Feb; 243(2):397-410. PubMed ID: 26433735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.