BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10564090)

  • 21. Phosphorylation of skeletal muscle calsequestrin enhances its Ca2+ binding capacity and promotes its association with junctin.
    Beard NA; Wei L; Cheung SN; Kimura T; Varsányi M; Dulhunty AF
    Cell Calcium; 2008 Oct; 44(4):363-73. PubMed ID: 19230141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localization and characterization of the calsequestrin-binding domain of triadin 1. Evidence for a charged beta-strand in mediating the protein-protein interaction.
    Kobayashi YM; Alseikhan BA; Jones LR
    J Biol Chem; 2000 Jun; 275(23):17639-46. PubMed ID: 10748065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Junctin and triadin each activate skeletal ryanodine receptors but junctin alone mediates functional interactions with calsequestrin.
    Wei L; Gallant EM; Dulhunty AF; Beard NA
    Int J Biochem Cell Biol; 2009 Nov; 41(11):2214-24. PubMed ID: 19398037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transitions of protein traffic from cardiac ER to junctional SR.
    Sleiman NH; McFarland TP; Jones LR; Cala SE
    J Mol Cell Cardiol; 2015 Apr; 81():34-45. PubMed ID: 25640161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Junctin and calsequestrin overexpression in cardiac muscle: the role of junctin and the synthetic and delivery pathways for the two proteins.
    Tijskens P; Jones LR; Franzini-Armstrong C
    J Mol Cell Cardiol; 2003 Aug; 35(8):961-74. PubMed ID: 12878483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered stored calcium release in skeletal myotubes deficient of triadin and junctin.
    Wang Y; Li X; Duan H; Fulton TR; Eu JP; Meissner G
    Cell Calcium; 2009 Jan; 45(1):29-37. PubMed ID: 18620751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Triadins modulate intracellular Ca(2+) homeostasis but are not essential for excitation-contraction coupling in skeletal muscle.
    Shen X; Franzini-Armstrong C; Lopez JR; Jones LR; Kobayashi YM; Wang Y; Kerrick WG; Caswell AH; Potter JD; Miller T; Allen PD; Perez CF
    J Biol Chem; 2007 Dec; 282(52):37864-74. PubMed ID: 17981799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calsequestrin, a calcium sequestering protein localized at the sarcoplasmic reticulum, is not essential for body-wall muscle function in Caenorhabditis elegans.
    Cho JH; Oh YS; Park KW; Yu J; Choi KY; Shin JY; Kim DH; Park WJ; Hamada T; Kagawa H; Maryon EB; Bandyopadhyay J; Ahnn J
    J Cell Sci; 2000 Nov; 113 ( Pt 22)():3947-58. PubMed ID: 11058082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum.
    Guo W; Campbell KP
    J Biol Chem; 1995 Apr; 270(16):9027-30. PubMed ID: 7721813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assembly and dynamics of proteins of the longitudinal and junctional sarcoplasmic reticulum in skeletal muscle cells.
    Cusimano V; Pampinella F; Giacomello E; Sorrentino V
    Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4695-700. PubMed ID: 19261851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of ryanodine receptors by calsequestrin: effect of high luminal Ca2+ and phosphorylation.
    Beard NA; Casarotto MG; Wei L; Varsányi M; Laver DR; Dulhunty AF
    Biophys J; 2005 May; 88(5):3444-54. PubMed ID: 15731387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alterations of expression and distribution of the Ca(2+)-storing proteins in endo/sarcoplasmic reticulum during differentiation of rat cardiomyocytes.
    Imanaka-Yoshida K; Amitani A; Ioshii SO; Koyabu S; Yamakado T; Yoshida T
    J Mol Cell Cardiol; 1996 Mar; 28(3):553-62. PubMed ID: 9011638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Topology of Homer 1c and Homer 1a in C2C12 myotubes and transgenic skeletal muscle fibers.
    Volpe P; Sandri C; Bortoloso E; Valle G; Nori A
    Biochem Biophys Res Commun; 2004 Apr; 316(3):884-92. PubMed ID: 15033484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of HRC (histidine-rich Ca(2+)-binding protein) and triadin in the lumen of sarcoplasmic reticulum.
    Lee HG; Kang H; Kim DH; Park WJ
    J Biol Chem; 2001 Oct; 276(43):39533-8. PubMed ID: 11504710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overexpression of junctin causes adaptive changes in cardiac myocyte Ca(2+) signaling.
    Kirchhefer U; Hanske G; Jones LR; Justus I; Kaestner L; Lipp P; Schmitz W; Neumann J
    Cell Calcium; 2006 Feb; 39(2):131-42. PubMed ID: 16289269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of triadin with histidine-rich Ca(2+)-binding protein at the triadic junction in skeletal muscle fibers.
    Sacchetto R; Turcato F; Damiani E; Margreth A
    J Muscle Res Cell Motil; 1999 May; 20(4):403-15. PubMed ID: 10531621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium.
    Györke I; Hester N; Jones LR; Györke S
    Biophys J; 2004 Apr; 86(4):2121-8. PubMed ID: 15041652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel details of calsequestrin gel conformation in situ.
    Perni S; Close M; Franzini-Armstrong C
    J Biol Chem; 2013 Oct; 288(43):31358-62. PubMed ID: 24025332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorylation of cardiac and skeletal muscle calsequestrin isoforms by casein kinase II. Demonstration of a cluster of unique rapidly phosphorylated sites in cardiac calsequestrin.
    Cala SE; Jones LR
    J Biol Chem; 1991 Jan; 266(1):391-8. PubMed ID: 1985907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oligomerization is an intrinsic property of calsequestrin in normal and transformed skeletal muscle.
    Maguire PB; Briggs FN; Lennon NJ; Ohlendieck K
    Biochem Biophys Res Commun; 1997 Nov; 240(3):721-7. PubMed ID: 9398633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.