These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 10564568)

  • 1. Stimulation of wound healing by positively charged dextran beads depends upon clustering of beads and cells in close proximity to the wound.
    Tawil NJ; Connors D; Gies D; Bennett S; Gruskin E; Mustoe T
    Wound Repair Regen; 1999; 7(5):389-99. PubMed ID: 10564568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase in wound breaking strength in rats in the presence of positively charged dextran beads correlates with an increase in endogenous transforming growth factor-beta1 and its receptor TGF-betaRI in close proximity to the wound.
    Connors D; Gies D; Lin H; Gruskin E; Mustoe TA; Tawil NJ
    Wound Repair Regen; 2000; 8(4):292-303. PubMed ID: 11013021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mast cells: an unexpected finding in the modulation of cutaneous wound repair by charged beads.
    Sasaki A; Mueller RV; Xi G; Sipe R; Buck D; Hollinger J
    Plast Reconstr Surg; 2003 Apr; 111(4):1446-53. PubMed ID: 12618603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of electrically charged particles in enhancement of rat wound healing.
    Wu L; Mockros NE; Casperson ME; Gruskin EA; Ladin DA; Roth SI; Mustoe TA
    J Surg Res; 1999 Jul; 85(1):43-50. PubMed ID: 10383836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of positively charged ion exchange beads in radiation-impaired models of wound healing.
    Galiano RD; Jyung RW; Krukowski M; Mustoe TA
    Ann Plast Surg; 1996 Jun; 36(6):608-14; discussion 614-5. PubMed ID: 8792970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charged beads enhance cutaneous wound healing in rhesus non-human primates.
    Burgess E; Hollinger J; Bennett S; Schmitt J; Buck D; Shannon R; Joh SP; Choi J; Mustoe T; Lin X; Skalla W; Connors D; Christoforou C; Gruskin E
    Plast Reconstr Surg; 1998 Dec; 102(7):2395-403. PubMed ID: 9858175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable positively charged ion exchange beads: a novel biomaterial for enhancing soft tissue repair.
    Christoforou C; Lin X; Bennett S; Connors D; Skalla W; Mustoe TA; Linehan J; Arnold F; Gruskin EA
    J Biomed Mater Res; 1998 Dec; 42(3):376-86. PubMed ID: 9788499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced healing of cutaneous wounds in rats using beads with positively charged surfaces.
    Mustoe TA; Weber DA; Krukowski M
    Plast Reconstr Surg; 1992 May; 89(5):891-7; discussion 898-9. PubMed ID: 1313980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Keratinocyte growth factor-2 accelerates wound healing in incisional wounds.
    Jimenez PA; Rampy MA
    J Surg Res; 1999 Feb; 81(2):238-42. PubMed ID: 9927546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of topically applied charged particles on healing of colonic anastomoses.
    Guler M; Kologlu M; Kama NA; Renda N; Gozalan U; Yuksek YN; Daglar G
    Arch Surg; 2002 Jul; 137(7):813-7. PubMed ID: 12093338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on healing of Debrisan-treated wounds.
    Jacobsson S; Jonsson L; Rank F; Rothman U
    Scand J Plast Reconstr Surg; 1976; 10(2):97-101. PubMed ID: 1019590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cultivation of BHK monolayer cells on DEAE Sephadex A50 beads maintained in suspension.
    Whiteside JP; Spier RE
    Dev Biol Stand; 1976; 35():62-72. PubMed ID: 801135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charged beads: generation of bone and giant cells.
    Krukowski M; Simmons DJ; Summerfield A; Osdoby P
    J Bone Miner Res; 1988 Apr; 3(2):165-71. PubMed ID: 2463737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The diabetic rat as an impaired wound healing model: stimulatory effects of transforming growth factor-beta and basic fibroblast growth factor.
    Broadley KN; Aquino AM; Hicks B; Ditesheim JA; McGee GS; Demetriou AA; Woodward SC; Davidson JM
    Biotechnol Ther; 1989-1990; 1(1):55-68. PubMed ID: 2562644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A potential biomaterial composite for dermal and subcutaneous augmentation.
    Eppley BL; Summerlin DJ; Sadove AM
    Ann Plast Surg; 1994 May; 32(5):463-8. PubMed ID: 8060068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonviable Staphylococcus aureus and its peptidoglycan stimulate macrophage recruitment, angiogenesis, fibroplasia, and collagen accumulation in wounded rats.
    Kilcullen JK; Ly QP; Chang TH; Levenson SM; Steinberg JJ
    Wound Repair Regen; 1998; 6(2):149-56. PubMed ID: 9776858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vanadate ingestion increases the gain in wound breaking strength and leads to better organized collagen fibers in rats during healing.
    Ehrlich HP; Keefer KA; Maish GO; Myers RL; Mackay DR
    Plast Reconstr Surg; 2001 Feb; 107(2):471-7. PubMed ID: 11214063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat.
    McFarlin K; Gao X; Liu YB; Dulchavsky DS; Kwon D; Arbab AS; Bansal M; Li Y; Chopp M; Dulchavsky SA; Gautam SC
    Wound Repair Regen; 2006; 14(4):471-8. PubMed ID: 16939576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of TGF-beta2 in various vehicles on incisional wound healing.
    Wright TE; Hill DP; Ko F; Soler PM; Smith PD; Franz M; Nichols EH; Robson MC
    Int J Surg Investig; 2000; 2(2):133-43. PubMed ID: 12678511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant basic fibroblast growth factor accelerates wound healing.
    McGee GS; Davidson JM; Buckley A; Sommer A; Woodward SC; Aquino AM; Barbour R; Demetriou AA
    J Surg Res; 1988 Jul; 45(1):145-53. PubMed ID: 3392988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.