These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 10564798)
1. Agaricus bisporus susceptibility to bacterial blotch in relation to environment: biochemical studies. Mamoun M; Moquet F; Savoie JM; Devesse C; Ramos-Guedes-Lafargue M; Olivier JM; Arpin N FEMS Microbiol Lett; 1999 Dec; 181(1):131-6. PubMed ID: 10564798 [TBL] [Abstract][Full Text] [Related]
2. Kinetic study of the oxidation of gamma-L-glutaminyl-4-hydroxybenzene catalyzed by mushroom (Agaricus bisporus) tyrosinase. Espín JC; Jolivet S; Wichers HJ J Agric Food Chem; 1999 Sep; 47(9):3495-502. PubMed ID: 10552675 [TBL] [Abstract][Full Text] [Related]
3. Melanocytotoxicity and the mechanism of activation of gamma-L-glutaminyl-4-hydroxybenzene. Boekelheide K; Graham DG; Mize PD; Koo EH J Invest Dermatol; 1980 Oct; 75(4):322-7. PubMed ID: 6107321 [TBL] [Abstract][Full Text] [Related]
4. The metabolic pathway catalyzed by the tyrosinase of Agaricus bisporus. Boekelheide K; Graham DG; Mize PD; Jeffs PW J Biol Chem; 1980 May; 255(10):4766-71. PubMed ID: 6102990 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of gamma-L-glutaminyl-[3,5-3H]4-hydroxybenzene and the study of reactions catalyzed by the tyrosinase of Agaricus bisporus. Boekelheide K; Graham DG; Mize PD; Anderson CW; Jeffs PW J Biol Chem; 1979 Dec; 254(23):12185-91. PubMed ID: 115880 [TBL] [Abstract][Full Text] [Related]
6. gamma-L-Glutaminyl-4-hydroxybenzene, an inducer of cryptobiosis in Agaricus bisporus and a source of specific metabolic inhibitors for melanogenic cells. Vogel FS; Kemper LA; Jeffs PW; Cass MW; Graham DG Cancer Res; 1977 Apr; 37(4):1133-6. PubMed ID: 403000 [TBL] [Abstract][Full Text] [Related]
7. Effect of gamma-irradiation on agaritine, gamma-glutaminyl-4-hydroxybenzene (GHB), antioxidant capacity, and total phenolic content of mushrooms ( Agaricus bisporus ). Sommer I; Schwartz H; Solar S; Sontag G J Agric Food Chem; 2009 Jul; 57(13):5790-4. PubMed ID: 19499949 [TBL] [Abstract][Full Text] [Related]
8. Characterization by 16S rRNA sequence analysis of pseudomonads causing blotch disease of cultivated Agaricus bisporus. Godfrey SA; Harrow SA; Marshall JW; Klena JD Appl Environ Microbiol; 2001 Sep; 67(9):4316-23. PubMed ID: 11526038 [TBL] [Abstract][Full Text] [Related]
9. Mushroom Tyrosinase: Six Isoenzymes Catalyzing Distinct Reactions. Pretzler M; Rompel A Chembiochem; 2024 Jul; 25(14):e202400050. PubMed ID: 38386893 [TBL] [Abstract][Full Text] [Related]
10. Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. Soler-Rivas C; Jolivet S; Arpin N; Olivier JM; Wichers HJ FEMS Microbiol Rev; 1999 Oct; 23(5):591-614. PubMed ID: 10525168 [TBL] [Abstract][Full Text] [Related]
11. Main phenolic compounds of the melanin biosynthesis pathway in bruising-tolerant and bruising-sensitive button mushroom (Agaricus bisporus) strains. Weijn A; van den Berg-Somhorst DB; Slootweg JC; Vincken JP; Gruppen H; Wichers HJ; Mes JJ J Agric Food Chem; 2013 Aug; 61(34):8224-31. PubMed ID: 23906106 [TBL] [Abstract][Full Text] [Related]
13. Efficient purification of a highly active H-subunit of tyrosinase from Agaricus bisporus. Lopez-Tejedor D; Palomo JM Protein Expr Purif; 2018 May; 145():64-70. PubMed ID: 29326063 [TBL] [Abstract][Full Text] [Related]
14. Agaricus bisporus as a source of tyrosinase for phenol detection for future biosensor development. Silva LM; Salgado AM; Coelho MA Environ Technol; 2010 May; 31(6):611-6. PubMed ID: 20540422 [TBL] [Abstract][Full Text] [Related]
15. A new assay method of gamma-glutamyltransferase with 4-aminobenzoate hydroxylase from Agaricus bisporus as a coupling enzyme. Mizutani Y; Nakano Y; Yamada S; Samejima T Clin Chim Acta; 1999 Sep; 287(1-2):83-97. PubMed ID: 10509898 [TBL] [Abstract][Full Text] [Related]
16. Tyrosinase extract from Agaricus bisporus mushroom and its in natura tissue for specific phenol removal. Kameda E; Langone MA; Coelho MA Environ Technol; 2006 Nov; 27(11):1209-15. PubMed ID: 17203602 [TBL] [Abstract][Full Text] [Related]
17. Production of recombinant Agaricus bisporus tyrosinase in Saccharomyces cerevisiae cells. Lezzi C; Bleve G; Spagnolo S; Perrotta C; Grieco F J Ind Microbiol Biotechnol; 2012 Dec; 39(12):1875-80. PubMed ID: 22996308 [TBL] [Abstract][Full Text] [Related]
18. Epsilon-poly-l-lysine alleviates brown blotch disease of postharvest Agaricus bisporus mushrooms by directly inhibiting Pseudomonas tolaasii and inducing mushroom disease resistance. Song R; Wang X; Jiao L; Jiang H; Yuan S; Zhang L; Shi Z; Fan Z; Meng D Pestic Biochem Physiol; 2024 Feb; 199():105759. PubMed ID: 38458662 [TBL] [Abstract][Full Text] [Related]
19. Phenotypic variation of Pseudomonas putida and P. tolaasii affects the chemotactic response to Agaricus bisporus mycelial exudate. Grewal SI; Rainey PB J Gen Microbiol; 1991 Dec; 137(12):2761-8. PubMed ID: 1791431 [TBL] [Abstract][Full Text] [Related]
20. Kinetic study of the activation process of a latent mushroom (Agaricus bisporus) tyrosinase by serine proteases. Espín JC; van Leeuwen J; Wichers HJ J Agric Food Chem; 1999 Sep; 47(9):3509-17. PubMed ID: 10552677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]