BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10565012)

  • 1. RNA mapping: selection of potent oligonucleotide sequences for antisense experiments.
    Ho SP; Britton DH; Bao Y; Scully MS
    Methods Enzymol; 2000; 314():168-83. PubMed ID: 10565012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries.
    Ho SP; Britton DH; Stone BA; Behrens DL; Leffet LM; Hobbs FW; Miller JA; Trainor GL
    Nucleic Acids Res; 1996 May; 24(10):1901-7. PubMed ID: 8657572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helix-stabilizing agent, CC-1065, enhances suppression of translation by an antisense oligodeoxynucleotide.
    Kim DY; Swenson DH; Cho DY; Taylor HW; Shih DS
    Antisense Res Dev; 1995; 5(2):149-54. PubMed ID: 7580119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries.
    Ho SP; Bao Y; Lesher T; Malhotra R; Ma LY; Fluharty SJ; Sakai RR
    Nat Biotechnol; 1998 Jan; 16(1):59-63. PubMed ID: 9447595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational selection of antisense oligonucleotide sequences.
    Smith L; Andersen KB; Hovgaard L; Jaroszewski JW
    Eur J Pharm Sci; 2000 Sep; 11(3):191-8. PubMed ID: 11042224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antisense oligonucleotide inhibition of bovine leukemia virus tax expression in a cell-free system.
    Cantor GH; Palmer GH
    Antisense Res Dev; 1992; 2(2):147-52. PubMed ID: 1327333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antisense oligonucleotides: the state of the art.
    Aboul-Fadl T
    Curr Med Chem; 2005; 12(19):2193-214. PubMed ID: 16178780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanism for suppression mRNA translation with antisense oligonucleotides].
    Vlasov VV; Iurchenko LV
    Mol Biol (Mosk); 1990; 24(5):1157-61. PubMed ID: 2290415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of viral growth by antisense oligonucleotides directed against the IE110 and the UL30 mRNA of herpes simplex virus type-1.
    Peyman A; Helsberg M; Kretzschmar G; Mag M; Grabley S; Uhlmann E
    Biol Chem Hoppe Seyler; 1995 Mar; 376(3):195-8. PubMed ID: 7612196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of antisense oligonucleotides in vivo.
    Woolf TM; Melton DA; Jennings CG
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7305-9. PubMed ID: 1380154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense of oligonucleotides and the inhibition of oncogene expression.
    Prins J; de Vries EG; Mulder NH
    Clin Oncol (R Coll Radiol); 1993; 5(4):245-52. PubMed ID: 8398922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antisense oligonucleotides directed against p53 have antiproliferative effects unrelated to effects on p53 expression.
    Barton CM; Lemoine NR
    Br J Cancer; 1995 Mar; 71(3):429-37. PubMed ID: 7880719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bias in nucleotide composition of antisense oligonucleotides.
    Smetsers TF; Boezeman JB; Mensink EJ
    Antisense Nucleic Acid Drug Dev; 1996; 6(1):63-7. PubMed ID: 8783797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites.
    Jakobsen MR; Haasnoot J; Wengel J; Berkhout B; Kjems J
    Retrovirology; 2007 Apr; 4():29. PubMed ID: 17459171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Antisense oligonucleotides resistance to coxsackievirus B3 infection in HeLa cells].
    Sun H; Liu Z; Zhang T
    Zhonghua Liu Xing Bing Xue Za Zhi; 2000 Aug; 21(4):295-7. PubMed ID: 11860805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Suppression of translation in vitro of the mRNA of the M1 protein of influenza virus using antisense oligonucleotides].
    Vlasov VV; Gorn VV; Nomokonova NIu; Fokina TN; Iurchenko LV
    Mol Biol (Mosk); 1991; 25(5):1332-7. PubMed ID: 1753959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of bacterial RNase P RNA as a drug target.
    Willkomm DK; Gruegelsiepe H; Goudinakis O; Kretschmer-Kazemi Far R; Bald R; Erdmann VA; Hartmann RK
    Chembiochem; 2003 Oct; 4(10):1041-8. PubMed ID: 14523922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and accurate determination of sites along the FUT2 in vitro transcript that are accessible to antisense oligonucleotides by application of secondary structure predictions and RNase H in combination with MALDI-TOF mass spectrometry.
    Gabler A; Krebs S; Seichter D; Förster M
    Nucleic Acids Res; 2003 Aug; 31(15):e79. PubMed ID: 12888531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multidrug resistance inhibition by antisense oligonucleotide against MDR1/mRNA in P-glycoprotein expressing leukemic cells.
    Nadali F; Pourfathollah AA; Alimoghaddam K; Nikougoftar M; Rostami S; Dizaji A; Azizi E; Zomorodipour A; Ghavamzadeh A
    Hematology; 2007 Oct; 12(5):393-401. PubMed ID: 17852455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Suppression of influenza virus NP-protein mRNA translation in vitro with derivatives of an antisense oligonucleotide].
    Abramova TV; Vlasov VV; Ivanova EM; Zarytova VF; Fokina TN; Frolova EI; Iurchenko LV
    Mol Biol (Mosk); 1994; 28(2):307-12. PubMed ID: 8183262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.