BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 105668)

  • 1. The mitochondrial and cytoplasmic valyl tRNA synthetases in Tetrahymena are indistinguishable.
    Suyama Y; Hamada J
    Arch Biochem Biophys; 1978 Dec; 191(2):437-43. PubMed ID: 105668
    [No Abstract]   [Full Text] [Related]  

  • 2. The absence of structural relationship between mitochondrial and mitochondrial and cytoplasmic leucyl-tRNA synthetases from Tetrahymena pyriformis.
    Chiu AO; Suyama Y
    Arch Biochem Biophys; 1975 Nov; 171(1):43-54. PubMed ID: 242273
    [No Abstract]   [Full Text] [Related]  

  • 3. Chloroplastic and cytoplasmic valyl- and leucyl-tRNA synthetases from Euglena gracilis. Comparative study of their structural properties.
    Colas B; Imbault P; Sarantoglou V; Boulanger Y; Weil JH
    Biochim Biophys Acta; 1982 Apr; 697(1):71-7. PubMed ID: 6805515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunologic studies on intracellular isoenzymes; the mitochondrial and cytoplasmic leucyl-tRNA synthetases.
    Chiu AO; Suyama Y
    Biochim Biophys Acta; 1973 Apr; 299(4):557-63. PubMed ID: 4196579
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanism of aminoacylation of tRNA. Influence of spermine on the kinetics of aminoacyl-tRNA synthetases by isoleucyl- and valyl-tRNA synthetases from Mycobacterium smegmatis.
    Natarajan V; Gopinathan KP
    Biochim Biophys Acta; 1981 Jun; 654(1):94-101. PubMed ID: 6912073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valyl-tRNA and leucyl-tRNA synthetases in wheat germ and seedlings.
    Rudzińska M; Goździcka-Józefiak A; Karwowska U; Augustyniak J
    Acta Biochim Pol; 1980; 27(3-4):309-19. PubMed ID: 7269974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast mitochondrial and cytoplasmic valyl-tRNA synthetases.
    Felter S; Diatewa M; Schneider C; Stahl AJ
    Biochem Biophys Res Commun; 1981 Feb; 98(3):727-34. PubMed ID: 7013764
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of the beta-phosphate-gamma-phosphate interchange reaction of adenosine triphosphate in amino acid discrimination by valyl- and methionyl-tRNA synthetases from Escherichia coli.
    Smith LT; Cohn M
    Biochemistry; 1981 Jan; 20(2):385-91. PubMed ID: 6258639
    [No Abstract]   [Full Text] [Related]  

  • 9. [Characteristics of the structure and specificity of aspartyl- and valyl-tRNA-synthetases from muscle tissue of long-fasting rabbits].
    Gulyĭ MF; Orlovskaia NN; Veselovskaia LD
    Ukr Biokhim Zh (1978); 1987; 59(5):32-6. PubMed ID: 3686690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two enzymatically active forms of valyl-tRNA-synthetase from E. coli.
    Paradies HH
    Biochem Biophys Res Commun; 1975 Jun; 64(4):1253-62. PubMed ID: 166643
    [No Abstract]   [Full Text] [Related]  

  • 11. Yellow lupin (Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate.
    Jakubowski H
    Biochim Biophys Acta; 1978 Dec; 521(2):584-96. PubMed ID: 32907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valyl-tRNA synthetase form yellow lupin seeds: hydrolysis of the enzyme-bound noncognate aminoacyl adenylate as a possible mechanism of increasing specificity of the aminoacyl-tRNA synthetase.
    Jakubowski H
    Biochemistry; 1980 Oct; 19(22):5071-8. PubMed ID: 6257275
    [No Abstract]   [Full Text] [Related]  

  • 13. The use of affinity elution from Blue Dextran Sepharose by yeast tRNA2Val in the complete purification of the cytoplasmic valyl-tRNA synthetase from Euglena gracilis.
    Sarantoglou V; Imbault P; Weil JH
    Biochem Biophys Res Commun; 1980 Mar; 93(1):134-40. PubMed ID: 6155123
    [No Abstract]   [Full Text] [Related]  

  • 14. Establishing the misacylation/deacylation of the tRNA pathway for the editing mechanism of prokaryotic and eukaryotic valyl-tRNA synthetases.
    Fersht AR; Dingwall C
    Biochemistry; 1979 Apr; 18(7):1238-45. PubMed ID: 371673
    [No Abstract]   [Full Text] [Related]  

  • 15. Alteration in two enzymatically active forms of valyl-tRNA synthetase during the sporulation of Bacillus subtilis.
    Ohyama K; Kaneko I; Yamakawa T; Watanabe T
    J Biochem; 1977 May; 81(5):1571-4. PubMed ID: 408335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of the chloroplastic valyl-tRNA synthetase from Euglena gracilis.
    Imbault P; Sarantoglou V; Weil JH
    Biochem Biophys Res Commun; 1979 May; 88(1):75-84. PubMed ID: 110330
    [No Abstract]   [Full Text] [Related]  

  • 17. The role of divalent cations in the reactions of valyl transfer ribonucleic acid synthetase of Escherichia coli. Effects of spermine and ethylenediaminetetraacetate.
    Chakraburtty K; Midelfort CF; Steinschneider A; Mehler AH
    J Biol Chem; 1975 May; 250(10):3861-5. PubMed ID: 805132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of heavy water substitution for water on the tRNAVal-valyl-tRNA synthetase system from yeast.
    Kern D; Zaccaí G; Giegé R
    Biochemistry; 1980 Jul; 19(14):3158-64. PubMed ID: 6996700
    [No Abstract]   [Full Text] [Related]  

  • 19. Complete purification and studies on the structural and kinetic properties of two forms of yeast valyl-tRNA synthetase.
    Kern D; Giegé R; Robre-Saul S; Boulanger Y; Ebel JP
    Biochimie; 1975; 57(10):1167-76. PubMed ID: 4150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A provisional mechanism for regulating the aminoacyl-tRNA synthetases.
    Black S
    Biochem Biophys Res Commun; 1993 Feb; 191(1):95-102. PubMed ID: 8447838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.