These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 10567362)
1. Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases. Collet JF; Stroobant V; Van Schaftingen E J Biol Chem; 1999 Nov; 274(48):33985-90. PubMed ID: 10567362 [TBL] [Abstract][Full Text] [Related]
2. A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. Collet JF; Stroobant V; Pirard M; Delpierre G; Van Schaftingen E J Biol Chem; 1998 Jun; 273(23):14107-12. PubMed ID: 9603909 [TBL] [Abstract][Full Text] [Related]
3. Insights into the catalytic mechanism of human sEH phosphatase by site-directed mutagenesis and LC-MS/MS analysis. Cronin A; Homburg S; Dürk H; Richter I; Adamska M; Frère F; Arand M J Mol Biol; 2008 Nov; 383(3):627-40. PubMed ID: 18775727 [TBL] [Abstract][Full Text] [Related]
4. Identification of the Mg2+-binding site in the P-type ATPase and phosphatase members of the HAD (haloacid dehalogenase) superfamily by structural similarity to the response regulator protein CheY. Ridder IS; Dijkstra BW Biochem J; 1999 Apr; 339 ( Pt 2)(Pt 2):223-6. PubMed ID: 10191250 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of phosphoanhydride cleavage by baculovirus phosphatase. Martins A; Shuman S J Biol Chem; 2000 Nov; 275(45):35070-6. PubMed ID: 10954717 [TBL] [Abstract][Full Text] [Related]
6. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Harris TK; Wu G; Massiah MA; Mildvan AS Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214 [TBL] [Abstract][Full Text] [Related]
7. Mutations responsible for 3-phosphoserine phosphatase deficiency. Veiga-da-Cunha M; Collet JF; Prieur B; Jaeken J; Peeraer Y; Rabbijns A; Van Schaftingen E Eur J Hum Genet; 2004 Feb; 12(2):163-6. PubMed ID: 14673469 [TBL] [Abstract][Full Text] [Related]
8. Mutation of the conserved domains of two inositol polyphosphate 5-phosphatases. Jefferson AB; Majerus PW Biochemistry; 1996 Jun; 35(24):7890-4. PubMed ID: 8672490 [TBL] [Abstract][Full Text] [Related]
9. Critical active-site residues identified by site-directed mutagenesis in Pseudomonas aeruginosa phosphorylcholine phosphatase, a new member of the haloacid dehalogenases hydrolase superfamily. Beassoni PR; Otero LH; Massimelli MJ; Lisa AT; Domenech CE Curr Microbiol; 2006 Dec; 53(6):534-9. PubMed ID: 17106798 [TBL] [Abstract][Full Text] [Related]
10. Abolishment of proton pumping and accumulation in the E1P conformational state of a plant plasma membrane H+-ATPase by substitution of a conserved aspartyl residue in transmembrane segment 6. Buch-Pedersen MJ; Venema K; Serrano R; Palmgren MG J Biol Chem; 2000 Dec; 275(50):39167-73. PubMed ID: 10995773 [TBL] [Abstract][Full Text] [Related]
11. BeF(3)(-) acts as a phosphate analog in proteins phosphorylated on aspartate: structure of a BeF(3)(-) complex with phosphoserine phosphatase. Cho H; Wang W; Kim R; Yokota H; Damo S; Kim SH; Wemmer D; Kustu S; Yan D Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8525-30. PubMed ID: 11438683 [TBL] [Abstract][Full Text] [Related]
12. Human L-3-phosphoserine phosphatase: sequence, expression and evidence for a phosphoenzyme intermediate. Collet JF; Gerin I; Rider MH; Veiga-da-Cunha M; Van Schaftingen E FEBS Lett; 1997 May; 408(3):281-4. PubMed ID: 9188776 [TBL] [Abstract][Full Text] [Related]
13. Reversible oxidation controls the activity and oligomeric state of the mammalian phosphoglycolate phosphatase AUM. Seifried A; Bergeron A; Boivin B; Gohla A Free Radic Biol Med; 2016 Aug; 97():75-84. PubMed ID: 27179418 [TBL] [Abstract][Full Text] [Related]
14. Transition state analysis and requirement of Asp-262 general acid/base catalyst for full activation of dual-specificity phosphatase MKP3 by extracellular regulated kinase. Rigas JD; Hoff RH; Rice AE; Hengge AC; Denu JM Biochemistry; 2001 Apr; 40(14):4398-406. PubMed ID: 11284696 [TBL] [Abstract][Full Text] [Related]
15. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase. Bredeston LM; González Flecha FL Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1471-8. PubMed ID: 27086711 [TBL] [Abstract][Full Text] [Related]
16. Catalytic activity of the SH2 domain of human pp60c-src; evidence from NMR, mass spectrometry, site-directed mutagenesis and kinetic studies for an inherent phosphatase activity. Boerner RJ; Consler TG; Gampe RT; Weigl D; Willard DH; Davis DG; Edison AM; Loganzo F; Kassel DB; Xu RX Biochemistry; 1995 Nov; 34(46):15351-8. PubMed ID: 7578151 [TBL] [Abstract][Full Text] [Related]
17. The crystal structure of bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily. Morais MC; Zhang W; Baker AS; Zhang G; Dunaway-Mariano D; Allen KN Biochemistry; 2000 Aug; 39(34):10385-96. PubMed ID: 10956028 [TBL] [Abstract][Full Text] [Related]
18. Discovery and analysis of cofactor-dependent phosphoglycerate mutase homologs as novel phosphoserine phosphatases in Hydrogenobacter thermophilus. Chiba Y; Oshima K; Arai H; Ishii M; Igarashi Y J Biol Chem; 2012 Apr; 287(15):11934-41. PubMed ID: 22337887 [TBL] [Abstract][Full Text] [Related]
19. Structural characterization of the reaction pathway in phosphoserine phosphatase: crystallographic "snapshots" of intermediate states. Wang W; Cho HS; Kim R; Jancarik J; Yokota H; Nguyen HH; Grigoriev IV; Wemmer DE; Kim SH J Mol Biol; 2002 May; 319(2):421-31. PubMed ID: 12051918 [TBL] [Abstract][Full Text] [Related]
20. The phosphorylation site of the Kdp-ATPase of Escherichia coli: site-directed mutagenesis of the aspartic acid residues 300 and 307 of the KdpB subunit. Puppe W; Siebers A; Altendorf K Mol Microbiol; 1992 Dec; 6(23):3511-20. PubMed ID: 1474895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]