BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 10567374)

  • 1. Thermodynamic stability of human lens recombinant alphaA- and alphaB-crystallins.
    Sun TX; Akhtar NJ; Liang JJ
    J Biol Chem; 1999 Nov; 274(48):34067-71. PubMed ID: 10567374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct roles of alphaA- and alphaB-crystallins under thermal and UV stresses.
    Liao JH; Lee JS; Chiou SH
    Biochem Biophys Res Commun; 2002 Jul; 295(4):854-61. PubMed ID: 12127973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat-induced conformational change of human lens recombinant alphaA- and alphaB-crystallins.
    Liang JJ; Sun TX; Akhtar NJ
    Mol Vis; 2000 Mar; 6():10-4. PubMed ID: 10706895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular exchange and stabilization of recombinant human alphaA- and alphaB-crystallin.
    Sun TX; Liang JJ
    J Biol Chem; 1998 Jan; 273(1):286-90. PubMed ID: 9417077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subunit exchange of lens alpha-crystallin: a fluorescence energy transfer study with the fluorescent labeled alphaA-crystallin mutant W9F as a probe.
    Sun TX; Akhtar NJ; Liang JJ
    FEBS Lett; 1998 Jul; 430(3):401-4. PubMed ID: 9688580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational and functional differences between recombinant human lens alphaA- and alphaB-crystallin.
    Sun TX; Das BK; Liang JJ
    J Biol Chem; 1997 Mar; 272(10):6220-5. PubMed ID: 9045637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into hydrophobicity and the chaperone-like function of alphaA- and alphaB-crystallins: an isothermal titration calorimetric study.
    Kumar MS; Kapoor M; Sinha S; Reddy GB
    J Biol Chem; 2005 Jun; 280(23):21726-30. PubMed ID: 15817465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eye lens alphaA- and alphaB-crystallin: complex stability versus chaperone-like activity.
    van Boekel MA; de Lange F; de Grip WJ; de Jong WW
    Biochim Biophys Acta; 1999 Sep; 1434(1):114-23. PubMed ID: 10556565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structural differences between bovine lens alphaA- and alphaB-crystallin.
    Abgar S; Backmann J; Aerts T; Vanhoudt J; Clauwaert J
    Eur J Biochem; 2000 Oct; 267(19):5916-25. PubMed ID: 10998051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding of human lens recombinant betaB2- and gammaC-crystallins.
    Fu L; Liang JJ
    J Struct Biol; 2002 Sep; 139(3):191-8. PubMed ID: 12457849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The alphaA-crystallin R116C mutant has a higher affinity for forming heteroaggregates with alphaB-crystallin.
    Bera S; Abraham EC
    Biochemistry; 2002 Jan; 41(1):297-305. PubMed ID: 11772029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deamidation affects structural and functional properties of human alphaA-crystallin and its oligomerization with alphaB-crystallin.
    Gupta R; Srivastava OP
    J Biol Chem; 2004 Oct; 279(43):44258-69. PubMed ID: 15284238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential temperature-dependent chaperone-like activity of alphaA- and alphaB-crystallin homoaggregates.
    Datta SA; Rao CM
    J Biol Chem; 1999 Dec; 274(49):34773-8. PubMed ID: 10574947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent chaperone activity and structural properties of human alphaA- and alphaB-crystallins.
    Reddy GB; Das KP; Petrash JM; Surewicz WK
    J Biol Chem; 2000 Feb; 275(7):4565-70. PubMed ID: 10671481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the C-terminal extensions of alpha-crystallins. Swapping the C-terminal extension of alpha-crystallin to alphaB-crystallin results in enhanced chaperone activity.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    J Biol Chem; 2002 Nov; 277(48):45821-8. PubMed ID: 12235146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins.
    Tiwary E; Hegde S; Purushotham S; Deivanayagam C; Srivastava O
    PLoS One; 2015; 10(12):e0144621. PubMed ID: 26657544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligomerization with wt αA- and αB-crystallins reduces proteasome-mediated degradation of C-terminally truncated αA-crystallin.
    Wu M; Zhang X; Bian Q; Taylor A; Liang JJ; Ding L; Horwitz J; Shang F
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2541-50. PubMed ID: 22427585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of Cu+2 with α-Crystallin: A Biophysical and Mass Spectrometric Study.
    Karmakar S; Das KP
    Protein Pept Lett; 2018; 25(3):275-284. PubMed ID: 29298644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins.
    Kumar LV; Ramakrishna T; Rao CM
    J Biol Chem; 1999 Aug; 274(34):24137-41. PubMed ID: 10446186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.