These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1056773)

  • 41. Method of Studying Palatal Fusion using Static Organ Culture.
    Ibrahim I; Serrano MJ; Svoboda KK
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26437268
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ontogeny and innervation of taste buds in mouse palatal gustatory epithelium.
    Rashwan A; Konishi H; El-Sharaby A; Kiyama H
    J Chem Neuroanat; 2016 Jan; 71():26-40. PubMed ID: 26686286
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X; Han J; Ito Y; Bringas P; Urata MM; Chai Y
    Dev Biol; 2006 Sep; 297(1):238-48. PubMed ID: 16780827
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Etiopathogenic consideration on the choanal atresia].
    De Dios García J; Otero Gómez-Quintero M
    Acta Otorinolaryngol Iber Am; 1971; 22(4):423-32 passim. PubMed ID: 5133509
    [No Abstract]   [Full Text] [Related]  

  • 45. [Ultrastructural changes of the palate epithelial surface during pre- and post-natal stages in the mouse].
    Kitano E
    Osaka Daigaku Shigaku Zasshi; 1988 Jun; 33(1):27-53. PubMed ID: 3254958
    [No Abstract]   [Full Text] [Related]  

  • 46. Cytokeratin, vimentin and E-cadherin immunodetection in the embryonic palate in two strains of mice with different susceptibility to glucocorticoid-induced clefting.
    Montenegro MA; Rojas M; Dominguez S; Vergara A
    J Craniofac Genet Dev Biol; 2000; 20(3):137-43. PubMed ID: 11321598
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cell proliferation and expression of EGF, TGF-alpha, and EGF receptor in the developing primary palate.
    Iamaroon A; Tait B; Diewert VM
    J Dent Res; 1996 Aug; 75(8):1534-9. PubMed ID: 8906120
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Epithelial breakdown in the palatal processes of mouse fetuses with spontaneous cleft lip and palate.
    Tsai HM; Verrusio AC
    Teratology; 1977 Feb; 15(1):121-3. PubMed ID: 841478
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cleft palate formation in fetal Br mice with midfacial retrusion: tenascin, fibronectin, laminin, and type IV collagen immunolocalization.
    Singh GD; Johnston J; Ma W; Lozanoff S
    Cleft Palate Craniofac J; 1998 Jan; 35(1):65-76. PubMed ID: 9482226
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Human prenatal palatal shelf elevation related to craniofacial skeletal maturation.
    Kjaer I
    Eur J Orthod; 1992 Feb; 14(1):26-30. PubMed ID: 1563471
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glucocorticoid receptor expression during the development of the embryonic mouse secondary palate.
    Abbott BD; McNabb FM; Lau C
    J Craniofac Genet Dev Biol; 1994; 14(2):87-96. PubMed ID: 8071426
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DNA methylation changes during cleft palate formation induced by retinoic acid in mice.
    Kuriyama M; Udagawa A; Yoshimoto S; Ichinose M; Sato K; Yamazaki K; Matsuno Y; Shiota K; Mori C
    Cleft Palate Craniofac J; 2008 Sep; 45(5):545-51. PubMed ID: 18788878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [A comparative morphometrical study on development of anterior septonasal accessory organs in the cleft palate mice].
    Cai Z; von Domarus H; Engel E
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2001 Dec; 19(6):363-5. PubMed ID: 12539683
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of the epithelium on palate shelf reorientation.
    Bulleit RF; Zimmerman EF
    J Embryol Exp Morphol; 1985 Aug; 88():265-79. PubMed ID: 3935750
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amniotic fluid induces rapid epithelialization in the experimentally ruptured fetal mouse palate--implications for fetal wound healing.
    Takigawa T; Shiota K
    Int J Dev Biol; 2007; 51(1):67-77. PubMed ID: 17183466
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Palate development in the TGF-beta 3 knockout mouse. Low vacuum scanning electron microscopy reveals changes in the medial edge epithelium.
    Martínez-Alvarez C; O'Kane S; Taya Y; Ferguson MW
    Int J Dev Biol; 1996; Suppl 1():115S-116S. PubMed ID: 9087722
    [No Abstract]   [Full Text] [Related]  

  • 57. Immunohistochemical localization of prostaglandins E and F2 alpha in the developing murine palate.
    Jones J; Shanfeld J; Davidovitch Z; Greene RM
    J Craniofac Genet Dev Biol; 1986; 6(1):63-71. PubMed ID: 3517033
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Developmental regulation of various annexins in the embryonic palate of the mouse: dexamethasone affects expression of annexin-1.
    Chepenik KP; Shipman-Appasamy P; Ahn N; Goldowitz D
    J Craniofac Genet Dev Biol; 1995; 15(4):171-81. PubMed ID: 8719346
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression of E-cadherin during craniofacial development.
    Lüning C; Rass A; Rozell B; Wroblewski J; Obrink B
    J Craniofac Genet Dev Biol; 1994; 14(4):207-16. PubMed ID: 7883867
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differences in collagen and cell density during normal and dexamethasone-treated secondary palate development in two strains of mice.
    Montenegro MA; Rojas M; Dominguez S; Posada J
    Int J Dev Biol; 1996; Suppl 1():245S-246S. PubMed ID: 9087781
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.