BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 10567754)

  • 21. Power-assisted wheels ease energy costs and perceptual responses to wheelchair propulsion in persons with shoulder pain and spinal cord injury.
    Nash MS; Koppens D; van Haaren M; Sherman AL; Lippiatt JP; Lewis JE
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2080-5. PubMed ID: 18996235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship Between Hand Contact Angle and Shoulder Loading During Manual Wheelchair Propulsion by Individuals with Paraplegia.
    Requejo PS; Mulroy SJ; Ruparel P; Hatchett PE; Haubert LL; Eberly VJ; Gronley JK
    Top Spinal Cord Inj Rehabil; 2015; 21(4):313-24. PubMed ID: 26689696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ascending curbs of progressively higher height increases forward trunk flexion along with upper extremity mechanical and muscular demands in manual wheelchair users with a spinal cord injury.
    Lalumiere M; Gagnon DH; Hassan J; Desroches G; Zory R; Pradon D
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1434-45. PubMed ID: 23866992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Movement and muscle activity pattern in wheelchair ambulation by persons with para-and tetraplegia.
    Schantz P; Björkman P; Sandberg M; Andersson E
    Scand J Rehabil Med; 1999 Jun; 31(2):67-76. PubMed ID: 10380721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional passive range of motion of individuals with chronic cervical spinal cord injury.
    Frye SK; Geigle PR; York HS; Sweatman WM
    J Spinal Cord Med; 2020 Mar; 43(2):257-263. PubMed ID: 31192777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glenohumeral contact forces and muscle forces evaluated in wheelchair-related activities of daily living in able-bodied subjects versus subjects with paraplegia and tetraplegia.
    van Drongelen S; van der Woude LH; Janssen TW; Angenot EL; Chadwick EK; Veeger DH
    Arch Phys Med Rehabil; 2005 Jul; 86(7):1434-40. PubMed ID: 16003677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Upper-extremity torque production in men with paraplegia who use wheelchairs.
    Kotajarvi BR; Basford JR; An KN
    Arch Phys Med Rehabil; 2002 Apr; 83(4):441-6. PubMed ID: 11932843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of spinal cord injury level on the activity of shoulder muscles during wheelchair propulsion: an electromyographic study.
    Mulroy SJ; Farrokhi S; Newsam CJ; Perry J
    Arch Phys Med Rehabil; 2004 Jun; 85(6):925-34. PubMed ID: 15179646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of reverse manual wheelchair propulsion on shoulder kinematics, kinetics and muscular activity in persons with paraplegia.
    Haubert LL; Mulroy SJ; Requejo PS; Maneekobkunwong S; Gronley JK; Rankin JW; Rodriguez D; Hong K
    J Spinal Cord Med; 2020 Sep; 43(5):594-606. PubMed ID: 30768378
    [No Abstract]   [Full Text] [Related]  

  • 31. Construction and evaluation of a model for wheelchair propulsion in an individual with tetraplegia.
    Odle B; Reinbolt J; Forrest G; Dyson-Hudson T
    Med Biol Eng Comput; 2019 Feb; 57(2):519-532. PubMed ID: 30255235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal-spatial characteristics of wheelchair propulsion. Effects of level of spinal cord injury, terrain, and propulsion rate.
    Newsam CJ; Mulroy SJ; Gronley JK; Bontrager EL; Perry J
    Am J Phys Med Rehabil; 1996; 75(4):292-9. PubMed ID: 8777025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hand-rim wheelchair propulsion capacity during rehabilitation of persons with spinal cord injury.
    Dallmeijer AJ; Kilkens OJ; Post MW; de Groot S; Angenot EL; van Asbeck FW; Nene AV; van der Woude LH
    J Rehabil Res Dev; 2005; 42(3 Suppl 1):55-63. PubMed ID: 16195963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.
    Tsai CY; Lin CJ; Huang YC; Lin PC; Su FC
    Biomed Eng Online; 2012 Nov; 11():87. PubMed ID: 23173938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wheelchair ergonomic hand drive mechanism use improves wrist mechanics associated with carpal tunnel syndrome.
    Zukowski LA; Roper JA; Shechtman O; Otzel DM; Hovis PW; Tillman MD
    J Rehabil Res Dev; 2014; 51(10):1515-24. PubMed ID: 25856042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical analysis of wheelchair athletes with paraplegia during cross-training exercises.
    Jones C; Schnorenberg AJ; Garlanger K; Leonardis JM; Kortes S; Riebe J; Plesnik J; Lee K; Slavens BA
    J Spinal Cord Med; 2022 Nov; 45(6):882-897. PubMed ID: 34100694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Upper-limb fatigue-related joint power shifts in experienced wheelchair users and nonwheelchair users.
    Rodgers MM; McQuade KJ; Rasch EK; Keyser RE; Finley MA
    J Rehabil Res Dev; 2003; 40(1):27-37. PubMed ID: 15150718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Wheelchair Stroke Pattern on Upper Extremity Muscle Fatigue.
    Bickelhaupt B; Oyama S; Benfield J; Burau K; Lee S; Trbovich M
    PM R; 2018 Oct; 10(10):1004-1011. PubMed ID: 29627608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shoulder pain and jerk during recovery phase of manual wheelchair propulsion.
    Jayaraman C; Beck CL; Sosnoff JJ
    J Biomech; 2015 Nov; 48(14):3937-44. PubMed ID: 26472307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The biomechanics of wheelchair propulsion in individuals with and without upper-limb impairment.
    Finley MA; Rasch EK; Keyser RE; Rodgers MM
    J Rehabil Res Dev; 2004 May; 41(3B):385-95. PubMed ID: 15543456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.