These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 10568167)
41. Tryptophan as a probe for acid-base equilibria in peptides. Marquezin CA; Hirata IY; Juliano L; Ito AS Biopolymers; 2003; 71(5):569-76. PubMed ID: 14635097 [TBL] [Abstract][Full Text] [Related]
42. Bisimidazoacridones: effect of molecular environment on conformation and photophysical properties. Tarasov SG; Casas-Finet JR; Cholody WM; Michejda CJ Photochem Photobiol; 1999 Oct; 70(4):568-78. PubMed ID: 10546554 [TBL] [Abstract][Full Text] [Related]
43. Picosecond time-resolved fluorescence from blue-emitting chromophore variants Y66F and Y66H of the green fluorescent protein. Kummer AD; Wiehler J; Schüttrigkeit TA; Berger BW; Steipe B; Michel-Beyerle ME Chembiochem; 2002 Jul; 3(7):659-63. PubMed ID: 12325000 [TBL] [Abstract][Full Text] [Related]
44. Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants. Royer CA Biophys J; 1992 Sep; 63(3):741-50. PubMed ID: 1420911 [TBL] [Abstract][Full Text] [Related]
45. Domain-specific fluorescence resonance energy transfer (FRET) sensors of metallothionein/thionein. Hong SH; Hao Q; Maret W Protein Eng Des Sel; 2005 Jun; 18(6):255-63. PubMed ID: 15911539 [TBL] [Abstract][Full Text] [Related]
46. A new approach to interpretation of heterogeneity of fluorescence decay: effect of induced tautomeric shift and enzyme-->ligand fluorescence resonance energy transfer. Wlodarczyk J; Kierdaszuk B Biophys Chem; 2006 Sep; 123(2-3):146-53. PubMed ID: 16765509 [TBL] [Abstract][Full Text] [Related]
47. Role of the head-to-tail overlap region in smooth and skeletal muscle beta-tropomyosin. Coulton AT; Koka K; Lehrer SS; Geeves MA Biochemistry; 2008 Jan; 47(1):388-97. PubMed ID: 18069797 [TBL] [Abstract][Full Text] [Related]
48. Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin. Kamal JK; Behere DV J Biol Inorg Chem; 2002 Mar; 7(3):273-83. PubMed ID: 11935351 [TBL] [Abstract][Full Text] [Related]
49. Anomalous "unquenching" of the fluorescence decay times of beta-lactoglobulin induced by the known quencher acrylamide. Portugal CA; Crespo JG; Lima JC J Photochem Photobiol B; 2006 Feb; 82(2):117-26. PubMed ID: 16288883 [TBL] [Abstract][Full Text] [Related]
50. PHOXI: A High Quantum Yield, Solvent-Sensitive Blue Fluorescent 5-Hydroxytryptophan Derivative Synthesized within Ten Minutes under Aqueous, Ambient Conditions. Grigoryan A; Eisenberg AS; Juszczak LJ J Phys Chem B; 2017 Aug; 121(30):7256-7266. PubMed ID: 28686023 [TBL] [Abstract][Full Text] [Related]
51. Position-specific incorporation of fluorescent non-natural amino acids into maltose-binding protein for detection of ligand binding by FRET and fluorescence quenching. Iijima I; Hohsaka T Chembiochem; 2009 Apr; 10(6):999-1006. PubMed ID: 19301314 [TBL] [Abstract][Full Text] [Related]
52. Application of a reference convolution method to tryptophan fluorescence in proteins. A refined description of rotational dynamics. Vos K; van Hoek A; Visser AJ Eur J Biochem; 1987 May; 165(1):55-63. PubMed ID: 3569297 [TBL] [Abstract][Full Text] [Related]
53. A new intrinsic fluorescent probe for proteins. Biosynthetic incorporation of 5-hydroxytryptophan into oncomodulin. Hogue CW; Rasquinha I; Szabo AG; MacManus JP FEBS Lett; 1992 Oct; 310(3):269-72. PubMed ID: 1383030 [TBL] [Abstract][Full Text] [Related]
54. [What determines the characteristics of the intrinsic UV-fluorescence of proteins? Analysis of the properties of the microenvironment and features of the localization of their tryptophan residues]. Kuznetsova IM; Turoverov KK Tsitologiia; 1998; 40(8-9):747-62. PubMed ID: 9821245 [TBL] [Abstract][Full Text] [Related]
55. Spectral enhancement of proteins: biological incorporation and fluorescence characterization of 5-hydroxytryptophan in bacteriophage lambda cI repressor. Ross JB; Senear DF; Waxman E; Kombo BB; Rusinova E; Huang YT; Laws WR; Hasselbacher CA Proc Natl Acad Sci U S A; 1992 Dec; 89(24):12023-7. PubMed ID: 1465434 [TBL] [Abstract][Full Text] [Related]
56. Local conformation of rabbit skeletal myosin rod filaments probed by intrinsic tryptophan fluorescence. Chang YC; Ludescher RD Biochemistry; 1994 Mar; 33(8):2313-21. PubMed ID: 8117688 [TBL] [Abstract][Full Text] [Related]
57. Unveiling the water-associated conformational mobility in the active site of ascorbate peroxidase. Chao WC; Lin LJ; Lu JF; Wang JS; Lin TC; Chen YH; Chen YT; Yang HC; Chou PT Biochim Biophys Acta Gen Subj; 2018 Mar; 1862(3):451-459. PubMed ID: 29104043 [TBL] [Abstract][Full Text] [Related]
58. 5-Hydroxytryptophan: an absorption and fluorescence probe which is a conservative replacement for [A14 tyrosine] in insulin. Laws WR; Schwartz GP; Rusinova E; Burke GT; Chu YC; Katsoyannis PG; Ross JB J Protein Chem; 1995 May; 14(4):225-32. PubMed ID: 7662110 [TBL] [Abstract][Full Text] [Related]
59. Time-resolved fluorescence and anisotropy decay of the tryptophan in adrenocorticotropin-(1-24). Ross JB; Rousslang KW; Brand L Biochemistry; 1981 Jul; 20(15):4361-9. PubMed ID: 6269589 [TBL] [Abstract][Full Text] [Related]