BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10569163)

  • 21. Adhesiveness of AcrySof to a collagen film.
    Nagata T; Minakata A; Watanabe I
    J Cataract Refract Surg; 1998 Mar; 24(3):367-70. PubMed ID: 9559473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of AcrySof versus silicone or polymethyl methacrylate intraocular lens on posterior capsule opacification.
    Li N; Chen X; Zhang J; Zhou Y; Yao X; Du L; Wei M; Liu Y
    Ophthalmology; 2008 May; 115(5):830-8. PubMed ID: 17964657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heparin surface-modified intraocular lenses in patients with inactive uveitis or diabetes.
    Tabbara KF; Al-Kaff AS; Al-Rajhi AA; Al-Mansouri SM; Badr IA; Chavis PS; Al-Omar OM
    Ophthalmology; 1998 May; 105(5):843-5. PubMed ID: 9593384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemoattraction of inflammatory cells by various intraocular lens materials.
    Ozdal PC; Antecka E; Baines MG; Vianna RN; Rudzinski M; Deschênes J
    Ocul Immunol Inflamm; 2005 Dec; 13(6):435-8. PubMed ID: 16321887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inflammatory cell adhesion and surface defects on heparin-surface-modified poly(methyl methacrylate) intraocular lenses in diabetic patients.
    Tognetto D; Ravalico G
    J Cataract Refract Surg; 2001 Feb; 27(2):239-44. PubMed ID: 11226789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro protein adsorption to 2 intraocular lens materials.
    Johnston RL; Spalton DJ; Hussain A; Marshall J
    J Cataract Refract Surg; 1999 Aug; 25(8):1109-15. PubMed ID: 10445197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative performance of intraocular lenses in eyes with cataract and uveitis.
    Alió JL; Chipont E; BenEzra D; Fakhry MA;
    J Cataract Refract Surg; 2002 Dec; 28(12):2096-108. PubMed ID: 12498843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Evaluation of the posterior capsule opacification in different types of artificial intraocular lenses].
    Pozlerová J; Nekolová J; Jirásková N; Rozsíval P
    Cesk Slov Oftalmol; 2009 Jan; 65(1):12-5. PubMed ID: 19366031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro adhesion of Staphylococcus epidermidis to intraocular lenses.
    García-Sáenz MC; Arias-Puente A; Fresnadillo-Martinez MJ; Matilla-Rodriguez A
    J Cataract Refract Surg; 2000 Nov; 26(11):1673-9. PubMed ID: 11084278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Speed of capsular bend formation at the optic edge of acrylic, silicone, and poly(methyl methacrylate) lenses.
    Nishi O; Nishi K; Akura J
    J Cataract Refract Surg; 2002 Mar; 28(3):431-7. PubMed ID: 11973089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biocompatibility of poly(methyl methacrylate), silicone, and AcrySof intraocular lenses: randomized comparison of the cellular reaction on the anterior lens surface.
    Hollick EJ; Spalton DJ; Ursell PG; Pande MV
    J Cataract Refract Surg; 1998 Mar; 24(3):361-6. PubMed ID: 9559472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction with intraocular lens materials: does heavy silicone oil act like silicone oil?
    Yaman A; Saatci AO; Sarioğlu S; Oner FH; Durak I
    J Cataract Refract Surg; 2007 Jan; 33(1):127-9. PubMed ID: 17189807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of intraocular lens surface adhesiveness by atomic force microscopy.
    Lombardo M; Carbone G; Lombardo G; De Santo MP; Barberi R
    J Cataract Refract Surg; 2009 Jul; 35(7):1266-72. PubMed ID: 19545819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anterior capsule opacification: a histopathological study comparing different IOL styles.
    Werner L; Pandey SK; Escobar-Gomez M; Visessook N; Peng Q; Apple DJ
    Ophthalmology; 2000 Mar; 107(3):463-71. PubMed ID: 10711882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphological appearance and size of contact zones of piggyback intraocular lenses.
    Findl O; Menapace R; Georgopoulos M; Kiss B; Petternel V; Rainer G
    J Cataract Refract Surg; 2001 Feb; 27(2):219-23. PubMed ID: 11226785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of 3-piece AcrySof and downsized heparin-surface-modified poly(methyl methacrylate) intraocular lenses in infant rabbit eyes.
    Lundvall A; Zetterström C; Lundgren B; Kugelberg U
    J Cataract Refract Surg; 2003 Jan; 29(1):159-63. PubMed ID: 12551684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uveal and capsular biocompatibility of an intraocular lens with a hydrophilic anterior surface and a hydrophobic posterior surface.
    Huang XD; Yao K; Zhang Z; Zhang Y; Wang Y
    J Cataract Refract Surg; 2010 Feb; 36(2):290-8. PubMed ID: 20152613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating and defining the sharpness of intraocular lenses: microedge structure of commercially available square-edged hydrophobic lenses.
    Werner L; Müller M; Tetz M
    J Cataract Refract Surg; 2008 Feb; 34(2):310-7. PubMed ID: 18242459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heparin and heparin-surface-modification reduce Staphylococcus epidermidis adhesion to intraocular lenses.
    Abu el-Asrar AM; Shibl AM; Tabbara KF; al-Kharashi SA
    Int Ophthalmol; 1997; 21(2):71-4. PubMed ID: 9405987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of glistenings in intraocular lenses with three different materials: 12-year follow-up.
    Rønbeck M; Behndig A; Taube M; Koivula A; Kugelberg M
    Acta Ophthalmol; 2013 Feb; 91(1):66-70. PubMed ID: 22035345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.