BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 10569202)

  • 1. Human tumor antigens: implications for cancer vaccine development.
    Wang RF
    J Mol Med (Berl); 1999 Sep; 77(9):640-55. PubMed ID: 10569202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human tumor antigens for cancer vaccine development.
    Wang RF; Rosenberg SA
    Immunol Rev; 1999 Aug; 170():85-100. PubMed ID: 10566144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MHC class II-restricted tumor antigens recognized by CD4+ T cells: new strategies for cancer vaccine design.
    Zeng G
    J Immunother; 2001; 24(3):195-204. PubMed ID: 11394496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing antitumor immune responses: intracellular peptide delivery and identification of MHC class II-restricted tumor antigens.
    Wang RF
    Immunol Rev; 2002 Oct; 188():65-80. PubMed ID: 12445282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MHC class I TCR engineered anti-tumor CD4 T cells: implications for cancer immunotherapy.
    Chhabra A
    Endocr Metab Immune Disord Drug Targets; 2009 Dec; 9(4):344-52. PubMed ID: 19807670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity.
    Wang RF
    Trends Immunol; 2001 May; 22(5):269-76. PubMed ID: 11323286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The identification of cancer antigens: impact on the development of cancer vaccines.
    Rosenberg SA
    Cancer J; 2000 Apr; 6 Suppl 2():S142-9. PubMed ID: 10803829
    [No Abstract]   [Full Text] [Related]  

  • 8. Tumor antigens discovery: perspectives for cancer therapy.
    Wang RF
    Mol Med; 1997 Nov; 3(11):716-31. PubMed ID: 9407548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MHC class II restricted neoantigen: A promising target in tumor immunotherapy.
    Sun Z; Chen F; Meng F; Wei J; Liu B
    Cancer Lett; 2017 Apr; 392():17-25. PubMed ID: 28104443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vaccination with an adenoviral vector encoding the tumor antigen directly linked to invariant chain induces potent CD4(+) T-cell-independent CD8(+) T-cell-mediated tumor control.
    Sorensen MR; Holst PJ; Pircher H; Christensen JP; Thomsen AR
    Eur J Immunol; 2009 Oct; 39(10):2725-36. PubMed ID: 19637230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A universal anti-cancer vaccine: Chimeric invariant chain potentiates the inhibition of melanoma progression and the improvement of survival.
    Sharbi-Yunger A; Grees M; Cafri G; Bassan D; Eichmüller SB; Tzehoval E; Utikal J; Umansky V; Eisenbach L
    Int J Cancer; 2019 Feb; 144(4):909-921. PubMed ID: 30106470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antitumour activity mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12.
    Homma S; Komita H; Sagawa Y; Ohno T; Toda G
    Immunology; 2005 Aug; 115(4):451-61. PubMed ID: 16011514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of MHC class II-restricted tumor antigens recognized by CD4+ T cells.
    Wang RF
    Methods; 2003 Mar; 29(3):227-35. PubMed ID: 12725788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumour-specific CTL response requiring interactions of four different cell types and recognition of MHC class I and class II restricted tumour antigens.
    Schirrmacher V; Schild HJ; Gückel B; von Hoegen P
    Immunol Cell Biol; 1993 Aug; 71 ( Pt 4)():311-26. PubMed ID: 7901150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T cell-mediated immune responses in melanoma: implications for immunotherapy.
    Wang RF; Zeng G; Johnston SF; Voo K; Ying H
    Crit Rev Oncol Hematol; 2002 Jul; 43(1):1-11. PubMed ID: 12098604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A human melanoma cell line, recognized by both HLA class I and class II restricted T cells, is capable of initiating both primary and secondary immune responses.
    Olsen AC; Fossum B; Kirkin AF; Zeuthen J; Gaudernack G
    Scand J Immunol; 1995 Apr; 41(4):357-64. PubMed ID: 7899823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting CD4(+) T-helper cells improves the induction of antitumor responses in dendritic cell-based vaccination.
    Aarntzen EH; De Vries IJ; Lesterhuis WJ; Schuurhuis D; Jacobs JF; Bol K; Schreibelt G; Mus R; De Wilt JH; Haanen JB; Schadendorf D; Croockewit A; Blokx WA; Van Rossum MM; Kwok WW; Adema GJ; Punt CJ; Figdor CG
    Cancer Res; 2013 Jan; 73(1):19-29. PubMed ID: 23087058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melanoma-specific CD4+ T lymphocytes recognize human melanoma antigens processed and presented by Epstein-Barr virus-transformed B cells.
    Topalian SL; Rivoltini L; Mancini M; Ng J; Hartzman RJ; Rosenberg SA
    Int J Cancer; 1994 Jul; 58(1):69-79. PubMed ID: 7516926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of NY-ESO-1-specific CD4+ and CD8+ T cells by a single peptide with dual MHC class I and class II specificities: a new strategy for vaccine design.
    Zeng G; Li Y; El-Gamil M; Sidney J; Sette A; Wang RF; Rosenberg SA; Robbins PF
    Cancer Res; 2002 Jul; 62(13):3630-5. PubMed ID: 12097265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autologous melanoma vaccine induces antitumor and self-reactive immune responses that affect patient survival and depend on MHC class II expression on vaccine cells.
    Lotem M; Machlenkin A; Hamburger T; Nissan A; Kadouri L; Frankenburg S; Gimmon Z; Elias O; David IB; Kuznetz A; Shiloni E; Peretz T
    Clin Cancer Res; 2009 Aug; 15(15):4968-77. PubMed ID: 19602547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.