BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

752 related articles for article (PubMed ID: 10569477)

  • 1. Macrophage colony-stimulating factor and interleukin-6 release by periprosthetic cells stimulates osteoclast formation and bone resorption.
    Neale SD; Sabokbar A; Howie DW; Murray DW; Athanasou NA
    J Orthop Res; 1999 Sep; 17(5):686-94. PubMed ID: 10569477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two distinct cellular mechanisms of osteoclast formation and bone resorption in periprosthetic osteolysis.
    Sabokbar A; Kudo O; Athanasou NA
    J Orthop Res; 2003 Jan; 21(1):73-80. PubMed ID: 12507582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synovial fluid macrophages are capable of osteoclast formation and resorption.
    Adamopoulos IE; Sabokbar A; Wordsworth BP; Carr A; Ferguson DJ; Athanasou NA
    J Pathol; 2006 Jan; 208(1):35-43. PubMed ID: 16278818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoclast differentiation and bone resorption in multicentric reticulohistiocytosis.
    Adamopoulos IE; Wordsworth PB; Edwards JR; Ferguson DJ; Athanasou NA
    Hum Pathol; 2006 Sep; 37(9):1176-85. PubMed ID: 16938523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human tumour-associated macrophages differentiate into osteoclastic bone-resorbing cells.
    Quinn JM; McGee JO; Athanasou NA
    J Pathol; 1998 Jan; 184(1):31-6. PubMed ID: 9582524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of interleukin 3 and of granulocyte-macrophage and macrophage colony stimulating factors on osteoclast differentiation from mouse hemopoietic tissue.
    Hattersley G; Chambers TJ
    J Cell Physiol; 1990 Jan; 142(1):201-9. PubMed ID: 2153687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human microvascular endothelial cell activation by IL-1 and TNF-alpha stimulates the adhesion and transendothelial migration of circulating human CD14+ monocytes that develop with RANKL into functional osteoclasts.
    Kindle L; Rothe L; Kriss M; Osdoby P; Collin-Osdoby P
    J Bone Miner Res; 2006 Feb; 21(2):193-206. PubMed ID: 16418775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arthroplasty membrane-derived fibroblasts directly induce osteoclast formation and osteolysis in aseptic loosening.
    Sabokbar A; Itonaga I; Sun SG; Kudo O; Athanasou NA
    J Orthop Res; 2005 May; 23(3):511-9. PubMed ID: 15885469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Staphylococcus aureus capsular material promotes osteoclast formation.
    Lau YS; Wang W; Sabokbar A; Simpson H; Nair S; Henderson B; Berendt A; Athanasou NA
    Injury; 2006 May; 37 Suppl 2():S41-8. PubMed ID: 16651071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human arthroplasty derived macrophages differentiate into osteoclastic bone resorbing cells.
    Sabokbar A; Fujikawa Y; Neale S; Murray DW; Athanasou NA
    Ann Rheum Dis; 1997 Jul; 56(7):414-20. PubMed ID: 9486003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human bone-derived cells support formation of human osteoclasts from arthroplasty-derived cells in vitro.
    Neale SD; Fujikawa Y; Sabokbar A; Gundle R; Murray DW; Graves SE; Howie DW; Athanasou NA
    J Bone Joint Surg Br; 2000 Aug; 82(6):892-900. PubMed ID: 10990320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythromycin inhibits wear debris-induced osteoclastogenesis by modulation of murine macrophage NF-kappaB activity.
    Ren W; Li XH; Chen BD; Wooley PH
    J Orthop Res; 2004 Jan; 22(1):21-9. PubMed ID: 14656655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of fibroblasts and fibroblast-derived factors in periprosthetic osteolysis.
    Koreny T; Tunyogi-Csapó M; Gál I; Vermes C; Jacobs JJ; Glant TT
    Arthritis Rheum; 2006 Oct; 54(10):3221-32. PubMed ID: 17009257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity.
    Kanatani M; Sugimoto T; Kaji H; Kobayashi T; Nishiyama K; Fukase M; Kumegawa M; Chihara K
    J Bone Miner Res; 1995 Nov; 10(11):1681-90. PubMed ID: 8592944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spindle-shaped cells derived from giant-cell tumor of bone support differentiation of blood monocytes to osteoclast-like cells.
    Miyamoto N; Higuchi Y; Tajima M; Ito M; Tsurudome M; Nishio M; Kawano M; Sudo A; Uchida A; Ito Y
    J Orthop Res; 2000 Jul; 18(4):647-54. PubMed ID: 11052502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular mechanisms of bone resorption in breast carcinoma.
    Hunt NC; Fujikawa Y; Sabokbar A; Itonaga I; Harris A; Athanasou NA
    Br J Cancer; 2001 Jul; 85(1):78-84. PubMed ID: 11437406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cells of the mononuclear phagocyte series differentiate into osteoclastic lacunar bone resorbing cells.
    Quinn JM; Sabokbar A; Athanasou NA
    J Pathol; 1996 May; 179(1):106-11. PubMed ID: 8691334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of circulating human osteoclast progenitors: development of in vitro resorption assay.
    Husheem M; Nyman JK; Vääräniemi J; Vaananen HK; Hentunen TA
    Calcif Tissue Int; 2005 Mar; 76(3):222-30. PubMed ID: 15692727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel synthetic triazolotriazepine derivative JTT-606 inhibits bone resorption by down-regulation of action and production of bone resorptive factors.
    Chikazu D; Shindo M; Iwasaka T; Katagiri M; Manabe N; Takato T; Nakamura K; Kawaguchi H
    J Bone Miner Res; 2000 Apr; 15(4):674-82. PubMed ID: 10780859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of transforming growth factor-alpha and macrophage colony-stimulating factor/colony-stimulating factor-1R (c-fins) by multinucleated giant cells involved in pathological bone resorption at the site of orthopaedic implants.
    Al-Saffar N; Revell PA
    J Orthop Res; 2000 Sep; 18(5):800-7. PubMed ID: 11117303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.