These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 10570248)
1. Structure and conformational flexibility of Candida rugosa lipase. Cygler M; Schrag JD Biochim Biophys Acta; 1999 Nov; 1441(2-3):205-14. PubMed ID: 10570248 [TBL] [Abstract][Full Text] [Related]
2. Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. Grochulski P; Bouthillier F; Kazlauskas RJ; Serreqi AN; Schrag JD; Ziomek E; Cygler M Biochemistry; 1994 Mar; 33(12):3494-500. PubMed ID: 8142346 [TBL] [Abstract][Full Text] [Related]
3. Insights into interfacial activation from an open structure of Candida rugosa lipase. Grochulski P; Li Y; Schrag JD; Bouthillier F; Smith P; Harrison D; Rubin B; Cygler M J Biol Chem; 1993 Jun; 268(17):12843-7. PubMed ID: 8509417 [TBL] [Abstract][Full Text] [Related]
4. A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols. Holmquist M; Haeffner F; Norin T; Hult K Protein Sci; 1996 Jan; 5(1):83-8. PubMed ID: 8771199 [TBL] [Abstract][Full Text] [Related]
5. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa. Norin M; Haeffner F; Achour A; Norin T; Hult K Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809 [TBL] [Abstract][Full Text] [Related]
6. Insights into the molecular basis for fatty acyl specificities of lipases from Geotrichum candidum and Candida rugosa. Holmquist M Chem Phys Lipids; 1998 Jun; 93(1-2):57-66. PubMed ID: 9720250 [TBL] [Abstract][Full Text] [Related]
8. Structural determinants defining common stereoselectivity of lipases toward secondary alcohols. Cygler M; Grochulski P; Schrag JD Can J Microbiol; 1995; 41 Suppl 1():289-96. PubMed ID: 7606666 [TBL] [Abstract][Full Text] [Related]
9. Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Uppenberg J; Ohrner N; Norin M; Hult K; Kleywegt GJ; Patkar S; Waagen V; Anthonsen T; Jones TA Biochemistry; 1995 Dec; 34(51):16838-51. PubMed ID: 8527460 [TBL] [Abstract][Full Text] [Related]
10. Probing the substrate specificity for lipases. II. Kinetic and modeling studies on the molecular recognition of 2-arylpropionic esters by Candida rugosa and Rhizomucor miehei lipases. Botta M; Cernia E; Corelli F; Manetti F; Soro S Biochim Biophys Acta; 1997 Feb; 1337(2):302-10. PubMed ID: 9048908 [TBL] [Abstract][Full Text] [Related]
11. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B Lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption. Foresti ML; Ferreira ML Biomacromolecules; 2004; 5(6):2366-75. PubMed ID: 15530053 [TBL] [Abstract][Full Text] [Related]
12. Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97A resolution. Mancheño JM; Pernas MA; Martínez MJ; Ochoa B; Rúa ML; Hermoso JA J Mol Biol; 2003 Oct; 332(5):1059-69. PubMed ID: 14499609 [TBL] [Abstract][Full Text] [Related]
13. Two conformational states of Candida rugosa lipase. Grochulski P; Li Y; Schrag JD; Cygler M Protein Sci; 1994 Jan; 3(1):82-91. PubMed ID: 8142901 [TBL] [Abstract][Full Text] [Related]
14. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Uppenberg J; Hansen MT; Patkar S; Jones TA Structure; 1994 Apr; 2(4):293-308. PubMed ID: 8087556 [TBL] [Abstract][Full Text] [Related]
15. Molecular modeling and its experimental verification for the catalytic mechanism of Candida antarctica lipase B. Kwon HC; Shin DY; Lee JH; Kim SW; Kang JW J Microbiol Biotechnol; 2007 Jul; 17(7):1098-105. PubMed ID: 18051319 [TBL] [Abstract][Full Text] [Related]
16. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204 [TBL] [Abstract][Full Text] [Related]
17. Influence of the conformational flexibility on the kinetics and dimerisation process of two Candida rugosa lipase isoenzymes. Pernas MA; López C; Rúa ML; Hermoso J FEBS Lett; 2001 Jul; 501(1):87-91. PubMed ID: 11457462 [TBL] [Abstract][Full Text] [Related]
18. Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review. Barriuso J; Vaquero ME; Prieto A; Martínez MJ Biotechnol Adv; 2016; 34(5):874-885. PubMed ID: 27188926 [TBL] [Abstract][Full Text] [Related]
19. Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites. Lee LC; Chen YT; Yen CC; Chiang TC; Tang SJ; Lee GC; Shaw JF J Agric Food Chem; 2007 Jun; 55(13):5103-8. PubMed ID: 17536826 [TBL] [Abstract][Full Text] [Related]
20. X-ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation. Ericsson DJ; Kasrayan A; Johansson P; Bergfors T; Sandström AG; Bäckvall JE; Mowbray SL J Mol Biol; 2008 Feb; 376(1):109-19. PubMed ID: 18155238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]