These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82. A Method to Predict the Structure and Stability of RNA/RNA Complexes. Xu X; Chen SJ Methods Mol Biol; 2016; 1490():63-72. PubMed ID: 27665593 [TBL] [Abstract][Full Text] [Related]
83. Dimer initiation signal of human immunodeficiency virus type 1: its role in partner selection during RNA copackaging and its effects on recombination. Moore MD; Fu W; Nikolaitchik O; Chen J; Ptak RG; Hu WS J Virol; 2007 Apr; 81(8):4002-11. PubMed ID: 17267488 [TBL] [Abstract][Full Text] [Related]
84. Dimer linkage structure in retroviruses: models that include both duplex and quadruplex domains. Zarudnaya MI; Kolomiets IM; Potyahaylo AL; Hovorun DM Ukr Biokhim Zh (1999); 2005; 77(2):5-15. PubMed ID: 16335231 [TBL] [Abstract][Full Text] [Related]
85. Bulged adenosine influence on the RNA duplex conformation in solution. Popenda L; Adamiak RW; Gdaniec Z Biochemistry; 2008 May; 47(18):5059-67. PubMed ID: 18399645 [TBL] [Abstract][Full Text] [Related]
86. Crystallization of the dimerization-initiation site of genomic HIV-1 RNA: preliminary crystallographic results. Yusupov M; Walter P; Marquet R; Ehresmann C; Ehresmann B; Dumas P Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):281-4. PubMed ID: 10089425 [TBL] [Abstract][Full Text] [Related]
87. Mode of dimerization of HIV-1 genomic RNA. Awang G; Sen D Biochemistry; 1993 Oct; 32(42):11453-7. PubMed ID: 8218211 [TBL] [Abstract][Full Text] [Related]
88. Mechanism of enhanced mechanical stability of a minimal RNA kissing complex elucidated by nonequilibrium molecular dynamics simulations. Chen AA; García AE Proc Natl Acad Sci U S A; 2012 Jun; 109(24):E1530-9. PubMed ID: 22623526 [TBL] [Abstract][Full Text] [Related]
89. A retroviral RNA kissing complex containing only two G.C base pairs. Kim CH; Tinoco I Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9396-401. PubMed ID: 10931958 [TBL] [Abstract][Full Text] [Related]
90. The role of salt concentration and magnesium binding in HIV-1 subtype-A and subtype-B kissing loop monomer structures. Kim T; Shapiro BA J Biomol Struct Dyn; 2013; 31(5):495-510. PubMed ID: 22881341 [TBL] [Abstract][Full Text] [Related]
91. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Liu D; Geary CW; Chen G; Shao Y; Li M; Mao C; Andersen ES; Piccirilli JA; Rothemund PWK; Weizmann Y Nat Chem; 2020 Mar; 12(3):249-259. PubMed ID: 31959958 [TBL] [Abstract][Full Text] [Related]
92. Mechanism of hairpin-duplex conversion for the HIV-1 dimerization initiation site. Bernacchi S; Ennifar E; Tóth K; Walter P; Langowski J; Dumas P J Biol Chem; 2005 Dec; 280(48):40112-21. PubMed ID: 16169845 [TBL] [Abstract][Full Text] [Related]
93. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach. Zhang K; Keane SC; Su Z; Irobalieva RN; Chen M; Van V; Sciandra CA; Marchant J; Heng X; Schmid MF; Case DA; Ludtke SJ; Summers MF; Chiu W Structure; 2018 Mar; 26(3):490-498.e3. PubMed ID: 29398526 [TBL] [Abstract][Full Text] [Related]
94. The essential role of stacking adenines in a two-base-pair RNA kissing complex. Stephenson W; Asare-Okai PN; Chen AA; Keller S; Santiago R; Tenenbaum SA; Garcia AE; Fabris D; Li PT J Am Chem Soc; 2013 Apr; 135(15):5602-11. PubMed ID: 23517345 [TBL] [Abstract][Full Text] [Related]
95. Targeting the dimerization initiation site of HIV-1 RNA with aminoglycosides: from crystal to cell. Ennifar E; Paillart JC; Bodlenner A; Walter P; Weibel JM; Aubertin AM; Pale P; Dumas P; Marquet R Nucleic Acids Res; 2006; 34(8):2328-39. PubMed ID: 16679451 [TBL] [Abstract][Full Text] [Related]
96. Modeling the dynamics of a mutated stem-loop in the SL1 domain of HIV-1Lai genomic RNA by 1H-NOESY spectra. Fausti S; La Penna G; Paoletti J; Genest D; Lancelot G; Perico A J Biomol NMR; 2001 Aug; 20(4):333-49. PubMed ID: 11563557 [TBL] [Abstract][Full Text] [Related]
97. The 5'-terminal stem-loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH. Toews S; Wacker A; Faison EM; Duchardt-Ferner E; Richter C; Mathieu D; Bottaro S; Zhang Q; Schwalbe H Nucleic Acids Res; 2024 Jul; 52(13):7971-7986. PubMed ID: 38842942 [TBL] [Abstract][Full Text] [Related]
98. Structure of an internal loop motif with three consecutive U•U mismatches from stem-loop 1 in the 3'-UTR of the SARS-CoV-2 genomic RNA. Vögele J; Duchardt-Ferner E; Bains JK; Knezic B; Wacker A; Sich C; Weigand JE; Šponer J; Schwalbe H; Krepl M; Wöhnert J Nucleic Acids Res; 2024 Jun; 52(11):6687-6706. PubMed ID: 38783391 [TBL] [Abstract][Full Text] [Related]
99. Binding of chemically-modified oligonucleotides to the double-stranded stem of an RNA hairpin. Aupeix K; Toulmé JJ Nucleosides Nucleotides; 1999; 18(6-7):1647-50. PubMed ID: 10474240 [TBL] [Abstract][Full Text] [Related]
100. Three-dimensional structure of the 3'X-tail of hepatitis C virus RNA in monomeric and dimeric states. Cantero-Camacho Á; Fan L; Wang YX; Gallego J RNA; 2017 Sep; 23(9):1465-1476. PubMed ID: 28630140 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]