BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10570947)

  • 1. Conserved extracellular cysteine residues in the inwardly rectifying potassium channel Kir2.3 are required for function but not expression in the membrane.
    Bannister JP; Young BA; Sivaprasadarao A; Wray D
    FEBS Lett; 1999 Sep; 458(3):393-9. PubMed ID: 10570947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1.
    Cho HC; Tsushima RG; Nguyen TT; Guy HR; Backx PH
    Biochemistry; 2000 Apr; 39(16):4649-57. PubMed ID: 10769120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of oxidizing and cysteine-reactive reagents on the inward rectifier potassium channels Kir2.3 and Kir1.1.
    Bannister JP; Young BA; Main MJ; Sivaprasadarao A; Wray D
    Pflugers Arch; 1999 Nov; 438(6):868-78. PubMed ID: 10591077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosine decaging leads to substantial membrane trafficking during modulation of an inward rectifier potassium channel.
    Tong Y; Brandt GS; Li M; Shapovalov G; Slimko E; Karschin A; Dougherty DA; Lester HA
    J Gen Physiol; 2001 Feb; 117(2):103-18. PubMed ID: 11158164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ammonium ions induce inactivation of Kir2.1 potassium channels expressed in Xenopus oocytes.
    Shieh RC; Lee YL
    J Physiol; 2001 Sep; 535(Pt 2):359-70. PubMed ID: 11533129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and expression of an inwardly rectifying K(+) channel from bovine corneal endothelial cells.
    Yang D; Sun F; Thomas LL; Offord J; MacCallum DK; Dawson DC; Hughes BA; Ernst SA
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2936-44. PubMed ID: 10967048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kir2.2v: a possible negative regulator of the inwardly rectifying K+ channel Kir2.2.
    Namba N; Inagaki N; Gonoi T; Seino Y; Seino S
    FEBS Lett; 1996 May; 386(2-3):211-4. PubMed ID: 8647284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cysteine substitutions on the topology of the S4 segment of the Shaker potassium channel: implications for molecular models of gating.
    Wang MH; Yusaf SP; Elliott DJ; Wray D; Sivaprasadarao A
    J Physiol; 1999 Dec; 521 Pt 2(Pt 2):315-26. PubMed ID: 10581304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of cytosolic cysteine residues to the gating properties of the Kir2.1 inward rectifier.
    Garneau L; Klein H; Parent L; Sauvé R
    Biophys J; 2003 Jun; 84(6):3717-29. PubMed ID: 12770878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do voltage-gated Kv1.1 and inward rectifier Kir2.1 potassium channels form heteromultimers?
    Tytgat J; Buyse G; Eggermont J; Droogmans G; Nilius B; Daenens P
    FEBS Lett; 1996 Jul; 390(3):280-4. PubMed ID: 8706877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells.
    Bradley KK; Jaggar JH; Bonev AD; Heppner TJ; Flynn ER; Nelson MT; Horowitz B
    J Physiol; 1999 Mar; 515 ( Pt 3)(Pt 3):639-51. PubMed ID: 10066894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and functional expression of human retinal kir2.4, a pH-sensitive inwardly rectifying K(+) channel.
    Hughes BA; Kumar G; Yuan Y; Swaminathan A; Yan D; Sharma A; Plumley L; Yang-Feng TL; Swaroop A
    Am J Physiol Cell Physiol; 2000 Sep; 279(3):C771-84. PubMed ID: 10942728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The weaver mutation changes the ion selectivity of the affected inwardly rectifying potassium channel GIRK2.
    Tong Y; Wei J; Zhang S; Strong JA; Dlouhy SR; Hodes ME; Ghetti B; Yu L
    FEBS Lett; 1996 Jul; 390(1):63-8. PubMed ID: 8706831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Ba(2+) block of a mouse inwardly rectifying K+ channel: differential contribution by two discrete residues.
    Alagem N; Dvir M; Reuveny E
    J Physiol; 2001 Jul; 534(Pt. 2):381-93. PubMed ID: 11454958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPAK and OSR1 Sensitive Kir2.1 K+ Channels.
    Fezai M; Ahmed M; Hosseinzadeh Z; Elvira B; Lang F
    Neurosignals; 2015; 23(1):20-33. PubMed ID: 26673921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of intra- and extracellular acidifications on single channel Kir2.3 currents.
    Zhu G; Chanchevalap S; Cui N; Jiang C
    J Physiol; 1999 May; 516 ( Pt 3)(Pt 3):699-710. PubMed ID: 10200419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of regions that regulate the expression and activity of G protein-gated inward rectifier K+ channels in Xenopus oocytes.
    Stevens EB; Woodward R; Ho IH; Murrell-Lagnado R
    J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):547-62. PubMed ID: 9379410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assaying phosphatidylinositol bisphosphate regulation of potassium channels.
    Rohács T; Lopes C; Mirshahi T; Jin T; Zhang H; Logothetis DE
    Methods Enzymol; 2002; 345():71-92. PubMed ID: 11665643
    [No Abstract]   [Full Text] [Related]  

  • 19. Probing pore topology and conformational changes of Kir2.1 potassium channels by cysteine scanning mutagenesis.
    Kubo Y; Yoshimichi M; Heinemann SH
    FEBS Lett; 1998 Sep; 435(1):69-73. PubMed ID: 9755861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ser165 in the second transmembrane region of the Kir2.1 channel determines its susceptibility to blockade by intracellular Mg2+.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2002 Nov; 120(5):677-93. PubMed ID: 12407079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.