These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 10571160)
21. Developing pyrrole-derived antimycobacterial agents: a rational lead optimization approach. Biava M; Porretta GC; Poce G; Battilocchio C; Alfonso S; de Logu A; Manetti F; Botta M ChemMedChem; 2011 Apr; 6(4):593-9. PubMed ID: 21341373 [TBL] [Abstract][Full Text] [Related]
22. The 8-Pyrrole-Benzothiazinones Are Noncovalent Inhibitors of DprE1 from Mycobacterium tuberculosis. Makarov V; Neres J; Hartkoorn RC; Ryabova OB; Kazakova E; Šarkan M; Huszár S; Piton J; Kolly GS; Vocat A; Conroy TM; Mikušová K; Cole ST Antimicrob Agents Chemother; 2015 Aug; 59(8):4446-52. PubMed ID: 25987616 [TBL] [Abstract][Full Text] [Related]
23. One-pot microwave assisted stereoselective synthesis of novel dihydro-2'H-spiro[indene-2,1'-pyrrolo-[3,4-c]pyrrole]-tetraones and evaluation of their antimycobacterial activity and inhibition of AChE. Bharkavi C; Vivek Kumar S; Ashraf Ali M; Osman H; Muthusubramanian S; Perumal S Bioorg Med Chem Lett; 2017 Jul; 27(14):3071-3075. PubMed ID: 28552337 [TBL] [Abstract][Full Text] [Related]
24. Antimycobacterial, antimicrobial activity, experimental (FT-IR, FT-Raman, NMR, UV-Vis, DSC) and DFT (transition state, chemical reactivity, NBO, NLO) studies on pyrrole-isonicotinyl hydrazine. Rawat P; Singh RN; Ranjan A; Ahmad S; Saxena R Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():1-10. PubMed ID: 28213139 [TBL] [Abstract][Full Text] [Related]
25. Synthesis and antimycobacterial activity of some 4-pyridinecarboxyamidrazone derivatives. Mamolo MG; Vio L; Banfi E; Predominato M; Fabris C; Asaro F Farmaco; 1993 Apr; 48(4):529-38. PubMed ID: 8357468 [TBL] [Abstract][Full Text] [Related]
26. Structure-activity relationships of pyrrole hydrazones as new anti-tuberculosis agents. Lessigiarska I; Pajeva I; Prodanova P; Georgieva M; Bijev A Med Chem; 2012 May; 8(3):462-73. PubMed ID: 22530903 [TBL] [Abstract][Full Text] [Related]
27. Design, synthesis and antitubercular evaluation of novel series of N-[4-(piperazin-1-yl)phenyl]cinnamamide derivatives. Patel KN; Telvekar VN Eur J Med Chem; 2014 Mar; 75():43-56. PubMed ID: 24530490 [TBL] [Abstract][Full Text] [Related]
28. Repurposing of a drug scaffold: Identification of novel sila analogues of rimonabant as potent antitubercular agents. Ramesh R; Shingare RD; Kumar V; Anand A; B S; Veeraraghavan S; Viswanadha S; Ummanni R; Gokhale R; Srinivasa Reddy D Eur J Med Chem; 2016 Oct; 122():723-730. PubMed ID: 27476117 [TBL] [Abstract][Full Text] [Related]
29. Synthesis and antimycobacterial activity of some 2-pyridinecarboxyamidrazone derivatives. Mamolo MG; Vio L; Banfi E; Predominato M; Fabris C; Asaro F Farmaco; 1992; 47(7-8):1055-66. PubMed ID: 1445613 [TBL] [Abstract][Full Text] [Related]
30. Inhibition of mycobacterial growth by plumbagin derivatives. Mathew R; Kruthiventi AK; Prasad JV; Kumar SP; Srinu G; Chatterji D Chem Biol Drug Des; 2010 Jul; 76(1):34-42. PubMed ID: 20456370 [TBL] [Abstract][Full Text] [Related]
31. Debromosceptrin, an alkaloid from the Caribbean sponge Agelas conifera. Shen X; Perry TL; Dunbar CD; Kelly-Borges M; Hamann MT J Nat Prod; 1998 Oct; 61(10):1302-3. PubMed ID: 9784176 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and antitubercular evaluation of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one derivatives. Peng CT; Gao C; Wang NY; You XY; Zhang LD; Zhu YX; Xv Y; Zuo WQ; Ran K; Deng HX; Lei Q; Xiao KJ; Yu LT Bioorg Med Chem Lett; 2015 Apr; 25(7):1373-6. PubMed ID: 25754492 [TBL] [Abstract][Full Text] [Related]
34. Identification of new diamine scaffolds with activity against Mycobacterium tuberculosis. Bogatcheva E; Hanrahan C; Nikonenko B; Samala R; Chen P; Gearhart J; Barbosa F; Einck L; Nacy CA; Protopopova M J Med Chem; 2006 Jun; 49(11):3045-8. PubMed ID: 16722620 [TBL] [Abstract][Full Text] [Related]
35. Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties. Joshi SD; Dixit SR; Kirankumar MN; Aminabhavi TM; Raju KV; Narayan R; Lherbet C; Yang KS Eur J Med Chem; 2016 Jan; 107():133-52. PubMed ID: 26580979 [TBL] [Abstract][Full Text] [Related]
36. [In vitro antimycobacterial activity of a new quinolone, T-3761]. Tomioka H; Sato K; Saito H Kekkaku; 1995 Feb; 70(2):97-101. PubMed ID: 7699982 [TBL] [Abstract][Full Text] [Related]
37. Novel amide and sulphonamide derivatives of 6-(piperazin-1-yl)phenanthridine as potent Mycobacterium tuberculosis H37Rv inhibitors. Naidu KM; Nagesh HN; Singh M; Sriram D; Yogeeswari P; Gowri Chandra Sekhar KV Eur J Med Chem; 2015 Mar; 92():415-26. PubMed ID: 25590862 [TBL] [Abstract][Full Text] [Related]
38. Synthesis and antimicrobial activity of some pyrrole derivatives. III--2-(4-arylpiperazino)-3-ethoxycarbonyl-5-aryl-pyrrole derivatives. Cocco MT; Congiu C; Maccioni A; Schivo ML; De Logu A; Palmieri G Farmaco Sci; 1988 Dec; 43(12):951-60. PubMed ID: 3248594 [TBL] [Abstract][Full Text] [Related]
39. Pharmacophore assessment through 3-D QSAR: evaluation of the predictive ability on new derivatives by the application on a series of antitubercular agents. Friggeri L; Ballante F; Ragno R; Musmuca I; De Vita D; Manetti F; Biava M; Scipione L; Di Santo R; Costi R; Feroci M; Tortorella S J Chem Inf Model; 2013 Jun; 53(6):1463-74. PubMed ID: 23617317 [TBL] [Abstract][Full Text] [Related]
40. Chemical synthesis and in silico molecular modeling of novel pyrrolyl benzohydrazide derivatives: Their biological evaluation against enoyl ACP reductase (InhA) and Mycobacterium tuberculosis. Joshi SD; More UA; Dixit SR; Balmi SV; Kulkarni BG; Ullagaddi G; Lherbet C; Aminabhavi TM Bioorg Chem; 2017 Dec; 75():181-200. PubMed ID: 28961440 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]