BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10571166)

  • 1. Wasalexins A and B, new phytoalexins from wasabi: isolation, synthesis, and antifungal activity.
    Pedras MS; Sorensen JL; Okanga FI; Zaharia IL
    Bioorg Med Chem Lett; 1999 Oct; 9(20):3015-20. PubMed ID: 10571166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of the crucifer phytoalexins wasalexin A and B in the plant pathogenic fungus Leptosphaeria maculans.
    Pedras MS; Suchý M
    Org Biomol Chem; 2006 Sep; 4(18):3526-35. PubMed ID: 17036150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: structures, syntheses and antifungal activity.
    Pedras MS; Chumala PB; Suchy M
    Phytochemistry; 2003 Nov; 64(5):949-56. PubMed ID: 14561510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detoxification pathways of the phytoalexins brassilexin and sinalexin in Leptosphaeria maculans: isolation and synthesis of the elusive intermediate 3-formylindolyl-2-sulfonic acid.
    Pedras MS; Suchy M
    Org Biomol Chem; 2005 May; 3(10):2002-7. PubMed ID: 15889184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Camalexin induces detoxification of the phytoalexin brassinin in the plant pathogen Leptosphaeria maculans.
    Pedras MS; Jha M; Okeola OG
    Phytochemistry; 2005 Nov; 66(22):2609-16. PubMed ID: 16266734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies of cruciferous pathogenic fungi: detoxification of the phytoalexin cyclobrassinin by mimicry.
    Pedras MS; Okanga FI
    J Agric Food Chem; 1999 Mar; 47(3):1196-202. PubMed ID: 10552437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detoxification of the phytoalexin brassinin by isolates of Leptosphaeria maculans pathogenic on brown mustard involves an inducible hydrolase.
    Pedras MS; Gadagi RS; Jha M; Sarma-Mamillapalle VK
    Phytochemistry; 2007 Jun; 68(11):1572-8. PubMed ID: 17467751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New sesquiterpenic phytotoxins establish unprecedented relationship between different groups of blackleg fungal isolates.
    Pedras MS; Chumala PB; Venkatesham U
    Bioorg Med Chem; 2005 Apr; 13(7):2469-75. PubMed ID: 15755649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phomapyrones from blackleg causing phytopathogenic fungi: isolation, structure determination, biosyntheses and biological activity.
    Pedras MS; Chumala PB
    Phytochemistry; 2005 Jan; 66(1):81-7. PubMed ID: 15649514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation, structure determination, and phytotoxicity of unusual dioxopiperazines from the phytopathogenic fungus Phoma lingam.
    Pedras MS; Biesenthal CJ
    Phytochemistry; 2001 Nov; 58(6):905-9. PubMed ID: 11684188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phytoalexins from cauliflower, caulilexins A, B and C: isolation, structure determination, syntheses and antifungal activity.
    Pedras MS; Sarwar MG; Suchy M; Adio AM
    Phytochemistry; 2006 Jul; 67(14):1503-9. PubMed ID: 16806330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and biological activity of maculansin A, a phytotoxin from the phytopathogenic fungus Leptosphaeria maculans.
    Pedras MS; Yu Y
    Phytochemistry; 2008 Dec; 69(17):2966-71. PubMed ID: 18977007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of 2,5-dioxopiperazine by a new isolate type of the blackleg fungus Phoma lingam.
    Pedras MS; Smith KC; Taylor JL
    Phytochemistry; 1998 Nov; 49(6):1575-1577. PubMed ID: 11711067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phomalairdenone: a new host-selective phytotoxin from a virulent type of the blackleg fungus Phoma lingam.
    Pedras MS; Erosa-López CC; Quail JW; Taylor JL
    Bioorg Med Chem Lett; 1999 Dec; 9(23):3291-4. PubMed ID: 10612587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defense and signalling metabolites of the crucifer Erucastrum canariense: Synchronized abiotic induction of phytoalexins and galacto-oxylipins.
    Pedras MSC; To QH
    Phytochemistry; 2017 Jul; 139():18-24. PubMed ID: 28390240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phytopathogenic fungi Leptosphaeria maculans and Leptosphaeria biglobosa: chemotaxonomical characterization of isolates and metabolite production in different culture media.
    Pedras MS; Chumala PB; Yu Y
    Can J Microbiol; 2007 Mar; 53(3):364-71. PubMed ID: 17538645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HPLC analyses of cultures of Phoma spp.: differentiation among groups and species through secondary metabolite profiles.
    Pedras MS; Biesenthal CJ
    Can J Microbiol; 2000 Aug; 46(8):685-91. PubMed ID: 10941513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing crucial metabolic pathways in fungal pathogens of crucifers: biotransformation of indole-3-acetaldoxime, 4-hydroxyphenylacetaldoxime, and their metabolites.
    Pedras MS; Montaut S
    Bioorg Med Chem; 2003 Jul; 11(14):3115-20. PubMed ID: 12818674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unprecedented chemical structure and biomimetic synthesis of erucalexin, a phytoalexin from the wild crucifer Erucastrum gallicum.
    Pedras MS; Suchy M; Ahiahonu PW
    Org Biomol Chem; 2006 Feb; 4(4):691-701. PubMed ID: 16467943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vital staining of plant cell suspension cultures: evaluation of the phytotoxic activity of the phytotoxins phomalide and destruxin B.
    Pedras MSC; Biesenthal CJ
    Plant Cell Rep; 2000 Nov; 19(11):1135-1138. PubMed ID: 30754782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.