BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 10571461)

  • 1. Mobility of the organochlorine compound dicofol in soil promoted by Pseudomonas fluorescens.
    Brunninger BM; Mano DM; Scheunert I; Langenbach T
    Ecotoxicol Environ Saf; 1999 Oct; 44(2):154-9. PubMed ID: 10571461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Kelthane degradation and the functioning of the enzymes of oxidation of aromatic compounds in Pseudomonas aeruginosa containing plasmid derivatives of naphthalene biodegradation].
    Golovleva LA; Boronin AM; Kozlovskiĭ SA; Kulakova AN; Travkin VM
    Izv Akad Nauk SSSR Biol; 1987; (6):863-70. PubMed ID: 3123534
    [No Abstract]   [Full Text] [Related]  

  • 3. Fate of 14C-bisphenol A in soils.
    Fent G; Hein WJ; Moendel MJ; Kubiak R
    Chemosphere; 2003 Jun; 51(8):735-46. PubMed ID: 12668032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dicofol residues in United States soils having a known history of its use as a miticide, 1974.
    Lyman WR; Anderson RJ
    Pestic Monit J; 1979 Sep; 13(2):72-4. PubMed ID: 514795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens.
    Couillerot O; Prigent-Combaret C; Caballero-Mellado J; Moënne-Loccoz Y
    Lett Appl Microbiol; 2009 May; 48(5):505-12. PubMed ID: 19291210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dicofol application resulted in high DDTs residue in cotton fields from northern Jiangsu province, China.
    Yang X; Wang S; Bian Y; Chen F; Yu G; Gu C; Jiang X
    J Hazard Mater; 2008 Jan; 150(1):92-8. PubMed ID: 17540500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off.
    Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K
    Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil amendments, plant age, and intercropping impact p,p'-DDE bioavailability to Cucurbita pepo.
    White JC; Parrish ZD; Gent MP; Iannucci-Berger W; Eitzer BD; Isleyen M; Mattina MI
    J Environ Qual; 2006; 35(4):992-1000. PubMed ID: 16738383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring physiological status of GFP-tagged Pseudomonas fluorescens SBW25 under different nutrient conditions and in soil by flow cytometry.
    Maraha N; Backman A; Jansson JK
    FEMS Microbiol Ecol; 2004 Dec; 51(1):123-32. PubMed ID: 16329861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of chromium contaminated soil by Pseudomonas fluorescens and indigenous microorganisms.
    Jeyalakshmi D; Kanmani S
    J Environ Sci Eng; 2008 Jan; 50(1):1-6. PubMed ID: 19192919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonas fluorescens dynamics in the soil surface to subsurface transect.
    Langenbach T; Maciel SJ; Neves BC; Hagler AN; Mano DM; Vugman NV
    J Environ Sci Health B; 2006; 41(4):415-25. PubMed ID: 16753960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative adherence to human A549 cells, plant fibronectin-like protein, and polystyrene surfaces of four Pseudomonas fluorescens strains from different ecological origin.
    Cossard E; Gallet O; Di Martino P
    Can J Microbiol; 2005 Sep; 51(9):811-5. PubMed ID: 16391662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the bound residue composition derived from 14C-labeled chlorsulfuron in soil by using LC-MS and isotope tracing method.
    Ye QF; Wu JM; Sun JH
    J Environ Sci (China); 2004; 16(1):73-8. PubMed ID: 14971456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintenance and impacts of an inoculated mer/luc-tagged Pseudomonas fluorescens on microbial communities in birch rhizospheres developed on humus and peat.
    Björklöf K; Sen R; Jørgensen KS
    Microb Ecol; 2003 Jan; 45(1):39-52. PubMed ID: 12447585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Resting state in Pseudomonas fluorescens induced by a prolonged water deficit].
    Shevtsova II; Ukrainskiĭ VV
    Mikrobiologiia; 1980; 49(6):888-92. PubMed ID: 6782433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize.
    Humphris SN; Bengough AG; Griffiths BS; Kilham K; Rodger S; Stubbs V; Valentine TA; Young IM
    FEMS Microbiol Ecol; 2005 Sep; 54(1):123-30. PubMed ID: 16329978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria.
    Braud A; Jézéquel K; Bazot S; Lebeau T
    Chemosphere; 2009 Jan; 74(2):280-6. PubMed ID: 18945474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption, mineralization and mobility of N-(phosphonomethyl)glycine (glyphosate) in five different types of gravel.
    Strange-Hansen R; Holm PE; Jacobsen OS; Jacobsen CS
    Pest Manag Sci; 2004 Jun; 60(6):570-8. PubMed ID: 15198330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deleterious impact of a virulent bacteriophage on survival and biocontrol activity of Pseudomonas fluorescens strain CHAO in natural soil.
    Keel C; Ucurum Z; Michaux P; Adrian M; Haas D
    Mol Plant Microbe Interact; 2002 Jun; 15(6):567-76. PubMed ID: 12059105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar.
    Frey B; Pesaro M; Rüdt A; Widmer F
    Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.