These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 10571465)
1. Usefulness of the sensitivity-resistance index to estimate the toxicity of copper on bacteria in copper-contaminated soils. Kunito T; Senoo K; Saeki K; Oyaizu H; Matsumoto S Ecotoxicol Environ Saf; 1999 Oct; 44(2):182-9. PubMed ID: 10571465 [TBL] [Abstract][Full Text] [Related]
2. Influences of copper forms on the toxicity to microorganisms in soils. Kunito T; Saeki K; Oyaizu H; Matsumoto S Ecotoxicol Environ Saf; 1999 Oct; 44(2):174-81. PubMed ID: 10571464 [TBL] [Abstract][Full Text] [Related]
3. Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil. Dell'Amico E; Mazzocchi M; Cavalca L; Allievi L; Andreoni V Microbiol Res; 2008; 163(6):671-83. PubMed ID: 17207985 [TBL] [Abstract][Full Text] [Related]
4. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. Turpeinen R; Kairesalo T; Häggblom MM FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345 [TBL] [Abstract][Full Text] [Related]
5. Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils. Yao HY; Liu YY; Xue D; Huang CY J Environ Sci (China); 2006; 18(3):503-9. PubMed ID: 17294647 [TBL] [Abstract][Full Text] [Related]
6. Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-independent bacterial community tolerance assay. Berg J; Thorsen MK; Holm PE; Jensen J; Nybroe O; Brandt KK Environ Sci Technol; 2010 Nov; 44(22):8724-8. PubMed ID: 20964403 [TBL] [Abstract][Full Text] [Related]
7. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX; Wang YP; Lin Q; Luo YM Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516 [TBL] [Abstract][Full Text] [Related]
8. The dynamics of soil bacterial community structure in response to yearly repeated agricultural copper treatments. Ranjard L; Nowak V; Echairi A; Faloya V; Chaussod R Res Microbiol; 2008 May; 159(4):251-4. PubMed ID: 18434097 [TBL] [Abstract][Full Text] [Related]
9. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
10. Bacterial diversity promotes community stability and functional resilience after perturbation. Girvan MS; Campbell CD; Killham K; Prosser JI; Glover LA Environ Microbiol; 2005 Mar; 7(3):301-13. PubMed ID: 15683391 [TBL] [Abstract][Full Text] [Related]
11. Effect of heavy metals on soil denitrification and CO2 production after short term incubation. Probanza A; Gutiérrez Mañero FJ; Ramos B; Acero N; Lucas JA Microbiologia; 1996 Sep; 12(3):417-24. PubMed ID: 8897422 [TBL] [Abstract][Full Text] [Related]
12. Toxicity of copper to the collembolan Folsomia fimetaria in relation to the age of soil contamination. Bruus Pedersen M; van Gestel CA Ecotoxicol Environ Saf; 2001 May; 49(1):54-9. PubMed ID: 11386715 [TBL] [Abstract][Full Text] [Related]
13. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Berg J; Tom-Petersen A; Nybroe O Lett Appl Microbiol; 2005; 40(2):146-51. PubMed ID: 15644115 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Lin Q; Wang Z; Ma S; Chen Y Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990 [TBL] [Abstract][Full Text] [Related]
16. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Li Z; Xu J; Tang C; Wu J; Muhammad A; Wang H Chemosphere; 2006 Mar; 62(8):1374-80. PubMed ID: 16216305 [TBL] [Abstract][Full Text] [Related]
17. Phytotoxicity and bioaccumulation of copper and chromium using barley (Hordeum vulgare L.) in spiked artificial and natural forest soils. Ali NA; Ater M; Sunahara GI; Robidoux PY Ecotoxicol Environ Saf; 2004 Mar; 57(3):363-74. PubMed ID: 15041259 [TBL] [Abstract][Full Text] [Related]
18. Resistance and resilience of Cu-polluted soil after Cu perturbation, tested by a wide range of soil microbial parameters. Deng H; Li XF; Cheng WD; Zhu YG FEMS Microbiol Ecol; 2009 Nov; 70(2):137-48. PubMed ID: 19663920 [TBL] [Abstract][Full Text] [Related]
19. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
20. Response of the microbial community to copper oxychloride in acidic sandy loam soil. Du Plessis KR; Botha A; Joubert L; Bester R; Conradie WJ; Wolfaardt GM J Appl Microbiol; 2005; 98(4):901-9. PubMed ID: 15752337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]