These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10571537)

  • 1. Virtual electrode-induced reexcitation: A mechanism of defibrillation.
    Cheng Y; Mowrey KA; Van Wagoner DR; Tchou PJ; Efimov IR
    Circ Res; 1999 Nov; 85(11):1056-66. PubMed ID: 10571537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure.
    Efimov IR; Cheng Y; Van Wagoner DR; Mazgalev T; Tchou PJ
    Circ Res; 1998 May; 82(8):918-25. PubMed ID: 9576111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the relationship between preshock state and virtual electrode polarization-induced propagated graded responses resulting in arrhythmia induction.
    Bourn DW; Gray RA; Trayanova NA
    Heart Rhythm; 2006 May; 3(5):583-95. PubMed ID: 16648066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanisms of the vulnerable window: the role of virtual electrodes and shock polarity.
    Yamanouchi Y; Cheng Y; Tchou PJ; Efimov IR
    Can J Physiol Pharmacol; 2001 Jan; 79(1):25-33. PubMed ID: 11201498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation.
    Efimov IR; Cheng Y; Yamanouchi Y; Tchou PJ
    J Cardiovasc Electrophysiol; 2000 Aug; 11(8):861-8. PubMed ID: 10969748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual electrode polarization in the far field: implications for external defibrillation.
    Efimov IR; Aguel F; Cheng Y; Wollenzier B; Trayanova N
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1055-70. PubMed ID: 10993768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunnel propagation following defibrillation with ICD shocks: hidden postshock activations in the left ventricular wall underlie isoelectric window.
    Constantino J; Long Y; Ashihara T; Trayanova NA
    Heart Rhythm; 2010 Jul; 7(7):953-61. PubMed ID: 20348028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation.
    Efimov IR; Gray RA; Roth BJ
    J Cardiovasc Electrophysiol; 2000 Mar; 11(3):339-53. PubMed ID: 10749359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Termination of spiral waves with biphasic shocks: role of virtual electrode polarization.
    Anderson C; Trayanova N; Skouibine K
    J Cardiovasc Electrophysiol; 2000 Dec; 11(12):1386-96. PubMed ID: 11196563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window.
    Ashihara T; Constantino J; Trayanova NA
    Circ Res; 2008 Mar; 102(6):737-45. PubMed ID: 18218982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of shock-induced changes in transmembrane potential on reentrant waves and outcome during cardioversion of isolated rabbit hearts.
    Evans FG; Ideker RE; Gray RA
    J Cardiovasc Electrophysiol; 2002 Nov; 13(11):1118-27. PubMed ID: 12475103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode.
    Efimov IR; Cheng YN; Biermann M; Van Wagoner DR; Mazgalev TN; Tchou PJ
    J Cardiovasc Electrophysiol; 1997 Sep; 8(9):1031-45. PubMed ID: 9300301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The probability of defibrillation success and the incidence of postshock arrhythmia as a function of shock strength.
    Cates AW; Wolf PD; Hillsley RE; Souza JJ; Smith WM; Ideker RE
    Pacing Clin Electrophysiol; 1994 Jul; 17(7):1208-17. PubMed ID: 7937226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of lidocaine on shock-induced vulnerability.
    Li L; Nikolski V; Efimov IR
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S237-48. PubMed ID: 14760929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of electroporation in defibrillation.
    Al-Khadra A; Nikolski V; Efimov IR
    Circ Res; 2000 Oct; 87(9):797-804. PubMed ID: 11055984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversal of repolarization gradient does not reverse the chirality of shock-induced reentry in the rabbit heart.
    Cheng Y; Nikolski V; Efimov IR
    J Cardiovasc Electrophysiol; 2000 Sep; 11(9):998-1007. PubMed ID: 11021470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arrhythmogenic changes in action potential configuration in the ventricle induced by DC shocks.
    Kodama I; Sakuma I; Shibata N; Honjo H; Toyama J
    J Electrocardiol; 1999; 32 Suppl():92-9. PubMed ID: 10688309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy levels for defibrillation: what is of real clinical importance?
    Fotuhi PC; Epstein AE; Ideker RE
    Am J Cardiol; 1999 Mar; 83(5B):24D-33D. PubMed ID: 10089836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postshock arrhythmogenesis in a slice of the canine heart.
    Hillebrenner MG; Eason JC; Campbell CA; Trayanova NA
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S249-56. PubMed ID: 14760930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Electrical defibrillation and cardioversion].
    Brazdzionyte J; Stanaitiene G; Ablonskyte-Dūdoniene R
    Medicina (Kaunas); 2005; 41(10):892-9. PubMed ID: 16272838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.