These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 10571771)

  • 1. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury?
    Gilbert RE; Cooper ME
    Kidney Int; 1999 Nov; 56(5):1627-37. PubMed ID: 10571771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy.
    Wang SN; LaPage J; Hirschberg R
    Kidney Int; 2000 Mar; 57(3):1002-14. PubMed ID: 10720953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis.
    Wang SN; Hirschberg R
    Am J Physiol Renal Physiol; 2000 Apr; 278(4):F554-60. PubMed ID: 10751215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up.
    Chen S; Jim B; Ziyadeh FN
    Semin Nephrol; 2003 Nov; 23(6):532-43. PubMed ID: 14631561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy.
    Marchant V; Droguett A; Valderrama G; Burgos ME; Carpio D; Kerr B; Ruiz-Ortega M; Egido J; Mezzano S
    Am J Physiol Renal Physiol; 2015 Sep; 309(6):F559-68. PubMed ID: 26155842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppressions of chronic glomerular injuries and TGF-beta 1 production by HGF in attenuation of murine diabetic nephropathy.
    Mizuno S; Nakamura T
    Am J Physiol Renal Physiol; 2004 Jan; 286(1):F134-43. PubMed ID: 14519594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.
    De Nicola L; Gabbai FB; Liberti ME; Sagliocca A; Conte G; Minutolo R
    Am J Kidney Dis; 2014 Jul; 64(1):16-24. PubMed ID: 24673844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progression of diabetic nephropathy. Insights from cell culture studies and animal models.
    Phillips A; Janssen U; Floege J
    Kidney Blood Press Res; 1999; 22(1-2):81-97. PubMed ID: 10352411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms of diabetic renal hypertrophy.
    Wolf G; Ziyadeh FN
    Kidney Int; 1999 Aug; 56(2):393-405. PubMed ID: 10432377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperglycemia and hyperlipidemia act synergistically to induce renal disease in LDL receptor-deficient BALB mice.
    Spencer MW; Mühlfeld AS; Segerer S; Hudkins KL; Kirk E; LeBoeuf RC; Alpers CE
    Am J Nephrol; 2004; 24(1):20-31. PubMed ID: 14671436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuation of tubular apoptosis by blockade of the renin-angiotensin system in diabetic Ren-2 rats.
    Kelly DJ; Cox AJ; Tolcos M; Cooper ME; Wilkinson-Berka JL; Gilbert RE
    Kidney Int; 2002 Jan; 61(1):31-9. PubMed ID: 11786082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and cellular distribution of TLR4, MyD88, and NF-κB in diabetic renal tubulointerstitial fibrosis, in vitro and in vivo.
    Liu P; Li F; Qiu M; He L
    Diabetes Res Clin Pract; 2014 Aug; 105(2):206-16. PubMed ID: 24894085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tubular atrophy, interstitial fibrosis, and inflammation in type 2 diabetic db/db mice. An accelerated model of advanced diabetic nephropathy.
    Ninichuk V; Kulkarni O; Clauss S; Anders H-
    Eur J Med Res; 2007 Aug; 12(8):351-5. PubMed ID: 17933712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glomerular protein trafficking and progression of renal disease to terminal uremia.
    Benigni A; Remuzzi G
    Semin Nephrol; 1996 May; 16(3):151-9. PubMed ID: 8734458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High glucose induces macrophage inflammatory protein-3 alpha in renal proximal tubule cells via a transforming growth factor-beta 1 dependent mechanism.
    Qi W; Chen X; Zhang Y; Holian J; Mreich E; Gilbert RE; Kelly DJ; Pollock CA
    Nephrol Dial Transplant; 2007 Nov; 22(11):3147-53. PubMed ID: 17664181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of candesartan, an angiotensin II type 1 receptor blocker, on diabetic nephropathy in KK/Ta mice.
    Liao J; Kobayashi M; Kanamuru Y; Nakamura S; Makita Y; Funabiki K; Horikoshi S; Tomino Y
    J Nephrol; 2003; 16(6):841-9. PubMed ID: 14736011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney.
    Vallon V; Thomson SC
    Annu Rev Physiol; 2012; 74():351-75. PubMed ID: 22335797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE).
    Oldfield MD; Bach LA; Forbes JM; Nikolic-Paterson D; McRobert A; Thallas V; Atkins RC; Osicka T; Jerums G; Cooper ME
    J Clin Invest; 2001 Dec; 108(12):1853-63. PubMed ID: 11748269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diabetic nephropathy and proximal tubule ROS: challenging our glomerulocentricity.
    Bagby SP
    Kidney Int; 2007 Jun; 71(12):1199-202. PubMed ID: 17554351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regular moderate exercise reduces advanced glycation and ameliorates early diabetic nephropathy in obese Zucker rats.
    Boor P; Celec P; Behuliak M; Grancic P; Kebis A; Kukan M; Pronayová N; Liptaj T; Ostendorf T; Sebeková K
    Metabolism; 2009 Nov; 58(11):1669-77. PubMed ID: 19608208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.