These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 10571916)
21. Pressurization of bioactive bone cement in vitro. Fujita H; Iida H; Kawanabe K; Okada Y; Oka M; Masuda T; Kitamura Y; Nakamura T J Biomed Mater Res; 1999; 48(1):43-51. PubMed ID: 10029149 [TBL] [Abstract][Full Text] [Related]
22. Bioactive bone cement: effect of surface curing properties on bone-bonding strength. Shinzato S; Kobayashi M; Mousa WF; Kamimura M; Neo M; Choju K; Kokubo T; Nakamura T J Biomed Mater Res; 2000; 53(1):51-61. PubMed ID: 10634952 [TBL] [Abstract][Full Text] [Related]
23. Bone-bonding ability of bioactive bone cement under mechanical stress. Mousa WF; Fujita H; Ido K; Neo M; Kobayashi M; Zeineldin IA; Matsushita M; Nakamura T J Biomed Mater Res; 1999; 48(5):726-33. PubMed ID: 10490689 [TBL] [Abstract][Full Text] [Related]
24. Antibiotic delivery system using bioactive bone cement consisting of Bis-GMA/TEGDMA resin and bioactive glass ceramics. Otsuka M; Sawada M; Matsuda Y; Nakamura T; Kokubo T Biomaterials; 1997 Dec; 18(23):1559-64. PubMed ID: 9430339 [TBL] [Abstract][Full Text] [Related]
25. A study of the bioactive bone cement--bone interface: quantitative and histological evaluation. Nishimura N; Taguchi Y; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S J Appl Biomater; 1993; 4(1):29-38. PubMed ID: 10148343 [TBL] [Abstract][Full Text] [Related]
26. Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate. Mori A; Ohtsuki C; Miyazaki T; Sugino A; Tanihara M; Kuramoto K; Osaka A J Mater Sci Mater Med; 2005 Aug; 16(8):713-8. PubMed ID: 15965740 [TBL] [Abstract][Full Text] [Related]
27. Surface structural change of bioactive inorganic filler-resin composite cement in simulated body fluid: effect of resin. Miyaji F; Morita Y; Kokubo T; Nakamura T J Biomed Mater Res; 1998 Dec; 42(4):604-10. PubMed ID: 9827685 [TBL] [Abstract][Full Text] [Related]
28. Ultrastructure of the interface between bioactive composite and bone: comparison of apatite and wollastonite containing glass-ceramic filler with hydroxyapatite and beta-tricalcium phosphate fillers. Okada Y; Kobayashi M; Neo M; Kokubo T; Nakamura T J Biomed Mater Res; 2001 Oct; 57(1):101-7. PubMed ID: 11416855 [TBL] [Abstract][Full Text] [Related]
29. Porous apatite-wollastonite glass-ceramic as an intramedullary plug. Fujita H; Iida H; Ido K; Matsuda Y; Oka M; Nakamura T J Bone Joint Surg Br; 2000 May; 82(4):614-8. PubMed ID: 10855893 [TBL] [Abstract][Full Text] [Related]
30. Interfacial strength of compression-molded specimens between PMMA powder and PMMA/MMA monomer solution-treated ultra-high molecular weight polyethylene (UHMWPE) powder. Park KD; Park JB J Biomed Mater Res; 2000; 53(6):737-47. PubMed ID: 11074434 [TBL] [Abstract][Full Text] [Related]
31. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530 [TBL] [Abstract][Full Text] [Related]
32. Bone bonding ability of bioactive bone cements. Tamura J; Kitsugi T; Iida H; Fujita H; Nakamura T; Kokubo T; Yoshihara S Clin Orthop Relat Res; 1997 Oct; (343):183-91. PubMed ID: 9345224 [TBL] [Abstract][Full Text] [Related]
33. Biological and mechanical properties of PMMA-based bioactive bone cements. Mousa WF; Kobayashi M; Shinzato S; Kamimura M; Neo M; Yoshihara S; Nakamura T Biomaterials; 2000 Nov; 21(21):2137-46. PubMed ID: 10985486 [TBL] [Abstract][Full Text] [Related]
34. Mechanical and biological properties of bioactive bone cement containing silica glass powder. Kobayashi M; Nakamura T; Tamura J; Iida H; Fujita H; Kokubo T; Kikutani T J Biomed Mater Res; 1997 Oct; 37(1):68-80. PubMed ID: 9335351 [TBL] [Abstract][Full Text] [Related]
35. Nano-mechanics of bone and bioactive bone cement interfaces in a load-bearing model. Ni GX; Choy YS; Lu WW; Ngan AH; Chiu KY; Li ZY; Tang B; Luk KD Biomaterials; 2006 Mar; 27(9):1963-70. PubMed ID: 16226309 [TBL] [Abstract][Full Text] [Related]
36. Influence of substituting B2O3 for CaF2 on the bonding behaviour to bone of glass-ceramics containing apatite and wollastonite. Kitsugi T; Yamamuro T; Nakamura T; Yoshii S; Kokubo T; Takagi M; Shibuya T Biomaterials; 1992; 13(6):393-9. PubMed ID: 1610964 [TBL] [Abstract][Full Text] [Related]
37. Titania-containing bioactive bone cement for total hip arthroplasty in dogs. Imamura M; Goto K; Kawata T; Kataoka M; Fukuda C; Fujibayashi S; Matsuda S J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1238-1245. PubMed ID: 30261123 [TBL] [Abstract][Full Text] [Related]
38. Neurotoxicity testing of a new bioactive bone cement. Murai N; Oda Y; Nagata I; Takahashi JA; Ishikawa M; Kikuchi H; Nakamura T Neurol Med Chir (Tokyo); 1997 Feb; 37(2):201-4. PubMed ID: 9059047 [TBL] [Abstract][Full Text] [Related]
39. Scanning electron microscopy-electron probe microanalysis study of the interface between apatite and wollastonite-containing glass-ceramic and rabbit tibia under load-bearing conditions after long-term implantation. Kitsugi T; Yamamuro T; Nakamura T; Oka M; Kokubo T; Okunaga K; Shibuya T Calcif Tissue Int; 1995 Apr; 56(4):331-5. PubMed ID: 7767846 [TBL] [Abstract][Full Text] [Related]
40. Effects of water-soluble component content on cephalexin release from bioactive bone cement consisting of bis-GMA/TEGDMA resin and bioactive glass ceramics. Otsuka M; Sawada M; Matsuda Y; Nakamura T; Kokubo T J Mater Sci Mater Med; 1999 Jan; 10(1):59-64. PubMed ID: 15347995 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]