These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10572006)

  • 1. Membrane assembly of the 16-kDa proteolipid channel from Nephrops norvegicus studied by relaxation enhancements in spin-label ESR.
    Páli T; Finbow ME; Marsh D
    Biochemistry; 1999 Oct; 38(43):14311-9. PubMed ID: 10572006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A divalent-ion binding site on the 16-kDa proton channel from Nephrops norvegicus--revealed by EPR spectroscopy.
    Páli T; Finbow ME; Marsh D
    Biochim Biophys Acta; 2006 Feb; 1758(2):206-12. PubMed ID: 16545340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of inhibitors of the vacuolar H(+)-ATPase with the transmembrane Vo-sector.
    Páli T; Whyteside G; Dixon N; Kee TP; Ball S; Harrison MA; Findlay JB; Finbow ME; Marsh D
    Biochemistry; 2004 Sep; 43(38):12297-305. PubMed ID: 15379568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid-protein interactions and assembly of the 16-kDa channel polypeptide from Nephrops norvegicus. Studies with spin-label electron spin resonance spectroscopy and electron microscopy.
    Páli T; Finbow ME; Holzenburg A; Findlay JB; Marsh D
    Biochemistry; 1995 Jul; 34(28):9211-8. PubMed ID: 7619822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of dibutyltin-3-hydroxyflavone bromide with the 16 kDa proteolipid indicates the disposition of proton translocation sites of the vacuolar ATPase.
    Hughes G; Harrison MA; Kim YI; Griffiths DE; Finbow ME; Findlay JB
    Biochem J; 1996 Jul; 317 ( Pt 2)(Pt 2):425-31. PubMed ID: 8713068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of lipid-accessible sites on the nephrops 16-kDa proteolipid incorporated into a hybrid vacuolar H(+)-ATPase: site-directed labeling with N-(1-Pyrenyl)cyclohexylcarbodiimide and fluorescence quenching analysis.
    Harrison M; Powell B; Finbow ME; Findlay JB
    Biochemistry; 2000 Jun; 39(25):7531-7. PubMed ID: 10858302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of transmembrane peptides from the vacuolar H(+)-ATPase in phospholipid membranes: spin-label electron paramagnetic resonance and polarized infrared spectroscopy.
    Kóta Z; Páli T; Dixon N; Kee TP; Harrison MA; Findlay JB; Finbow ME; Marsh D
    Biochemistry; 2008 Mar; 47(12):3937-49. PubMed ID: 18307317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of spin-labeled inhibitors of the vacuolar H+-ATPase with the transmembrane Vo-sector.
    Dixon N; Páli T; Kee TP; Ball S; Harrison MA; Findlay JB; Nyman J; Väänänen K; Finbow ME; Marsh D
    Biophys J; 2008 Jan; 94(2):506-14. PubMed ID: 17872954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The first putative transmembrane helix of the 16 kDa proteolipid lines a pore in the Vo sector of the vacuolar H(+)-ATPase.
    Jones PC; Harrison MA; Kim YI; Finbow ME; Findlay JB
    Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):739-47. PubMed ID: 8554514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global topology & stability and local structure & dynamics in a synthetic spin-labeled four-helix bundle protein.
    Gibney BR; Johansson JS; Rabanal F; Skalicky JJ; Wand AJ; Dutton PL
    Biochemistry; 1997 Mar; 36(10):2798-806. PubMed ID: 9062107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane location of spin-labeled M13 major coat protein mutants determined by paramagnetic relaxation agents.
    Stopar D; Jansen KA; Páli T; Marsh D; Hemminga MA
    Biochemistry; 1997 Jul; 36(27):8261-8. PubMed ID: 9204871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between lipid-anchored and transmembrane proteins. Spin-label ESR studies on avidin-biotinyl phosphatidylethanolamine in membrane recombinants with myelin proteolipid proteins.
    Swamy MJ; Horváth LI; Brophy PJ; Marsh D
    Biochemistry; 1999 Dec; 38(49):16333-9. PubMed ID: 10587458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saturation transfer electron spin resonance of Ca2(+)-ATPase covalently spin-labeled with beta-substituted vinyl ketone- and maleimide-nitroxide derivatives. Effects of segmental motion and labeling levels.
    Horváth LI; Dux L; Hankovszky HO; Hideg K; Marsh D
    Biophys J; 1990 Jul; 58(1):231-41. PubMed ID: 2166598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exchange rates at the lipid-protein interface of the myelin proteolipid protein determined by saturation transfer electron spin resonance and continuous wave saturation studies.
    Horváth LI; Brophy PJ; Marsh D
    Biophys J; 1993 Mar; 64(3):622-31. PubMed ID: 7682453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-labeled gramicidin a: channel formation and dissociation.
    Dzikovski BG; Borbat PP; Freed JH
    Biophys J; 2004 Nov; 87(5):3504-17. PubMed ID: 15326023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases.
    Mandel M; Moriyama Y; Hulmes JD; Pan YC; Nelson H; Nelson N
    Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5521-4. PubMed ID: 2456571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin label saturation transfer EPR determinations of the stoichiometry and selectivity of lipid-protein interactions in the gel phase.
    Horváth LI; Brophy PJ; Marsh D
    Biochim Biophys Acta; 1993 Apr; 1147(2):277-80. PubMed ID: 8386549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helical interactions and membrane disposition of the 16-kDa proteolipid subunit of the vacuolar H(+)-ATPase analyzed by cysteine replacement mutagenesis.
    Harrison MA; Murray J; Powell B; Kim YI; Finbow ME; Findlay JB
    J Biol Chem; 1999 Sep; 274(36):25461-70. PubMed ID: 10464277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studying lipid-protein interactions with electron paramagnetic resonance spectroscopy of spin-labeled lipids.
    Páli T; Kóta Z
    Methods Mol Biol; 2013; 974():297-328. PubMed ID: 23404282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low microwave-amplitude ESR spectroscopy: measuring spin-relaxation interactions of moderately immobilized spin labels in proteins.
    Hedin EM; Hult K; Mouritsen OG; Høyrup P
    J Biochem Biophys Methods; 2004 Aug; 60(2):117-38. PubMed ID: 15262447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.