These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 10572014)
1. Multiple in vivo tyrosine phosphorylation sites in EphB receptors. Kalo MS; Pasquale EB Biochemistry; 1999 Oct; 38(43):14396-408. PubMed ID: 10572014 [TBL] [Abstract][Full Text] [Related]
2. Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2 juxtamembrane region. Zisch AH; Kalo MS; Chong LD; Pasquale EB Oncogene; 1998 May; 16(20):2657-70. PubMed ID: 9632142 [TBL] [Abstract][Full Text] [Related]
3. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. Holland SJ; Gale NW; Gish GD; Roth RA; Songyang Z; Cantley LC; Henkemeyer M; Yancopoulos GD; Pawson T EMBO J; 1997 Jul; 16(13):3877-88. PubMed ID: 9233798 [TBL] [Abstract][Full Text] [Related]
4. A juxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn. Ellis C; Kasmi F; Ganju P; Walls E; Panayotou G; Reith AD Oncogene; 1996 Apr; 12(8):1727-36. PubMed ID: 8622893 [TBL] [Abstract][Full Text] [Related]
5. Multiple signaling interactions of Abl and Arg kinases with the EphB2 receptor. Yu HH; Zisch AH; Dodelet VC; Pasquale EB Oncogene; 2001 Jul; 20(30):3995-4006. PubMed ID: 11494128 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Wybenga-Groot LE; Baskin B; Ong SH; Tong J; Pawson T; Sicheri F Cell; 2001 Sep; 106(6):745-57. PubMed ID: 11572780 [TBL] [Abstract][Full Text] [Related]
7. Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Zisch AH; Pazzagli C; Freeman AL; Schneller M; Hadman M; Smith JW; Ruoslahti E; Pasquale EB Oncogene; 2000 Jan; 19(2):177-87. PubMed ID: 10644995 [TBL] [Abstract][Full Text] [Related]
8. In vitro phosphorylation of the epidermal growth factor receptor autophosphorylation domain by c-src: identification of phosphorylation sites and c-src SH2 domain binding sites. Lombardo CR; Consler TG; Kassel DB Biochemistry; 1995 Dec; 34(50):16456-66. PubMed ID: 8845374 [TBL] [Abstract][Full Text] [Related]
9. Identification of RET autophosphorylation sites by mass spectrometry. Kawamoto Y; Takeda K; Okuno Y; Yamakawa Y; Ito Y; Taguchi R; Kato M; Suzuki H; Takahashi M; Nakashima I J Biol Chem; 2004 Apr; 279(14):14213-24. PubMed ID: 14711813 [TBL] [Abstract][Full Text] [Related]
10. Manipulation of EphB2 regulatory motifs and SH2 binding sites switches MAPK signaling and biological activity. Tong J; Elowe S; Nash P; Pawson T J Biol Chem; 2003 Feb; 278(8):6111-9. PubMed ID: 12486127 [TBL] [Abstract][Full Text] [Related]
11. In vivo tyrosine phosphorylation sites of activated ephrin-B1 and ephB2 from neural tissue. Kalo MS; Yu HH; Pasquale EB J Biol Chem; 2001 Oct; 276(42):38940-8. PubMed ID: 11466320 [TBL] [Abstract][Full Text] [Related]
12. Identification of major ERK-related phosphorylation sites in Gab1. Lehr S; Kotzka J; Avci H; Sickmann A; Meyer HE; Herkner A; Muller-Wieland D Biochemistry; 2004 Sep; 43(38):12133-40. PubMed ID: 15379552 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Binns KL; Taylor PP; Sicheri F; Pawson T; Holland SJ Mol Cell Biol; 2000 Jul; 20(13):4791-805. PubMed ID: 10848605 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation at Tyr-838 in the kinase domain of EphA8 modulates Fyn binding to the Tyr-615 site by enhancing tyrosine kinase activity. Choi S; Park S Oncogene; 1999 Sep; 18(39):5413-22. PubMed ID: 10498895 [TBL] [Abstract][Full Text] [Related]
15. Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins. Karlsson T; Songyang Z; Landgren E; Lavergne C; Di Fiore PP; Anafi M; Pawson T; Cantley LC; Claesson-Welsh L; Welsh M Oncogene; 1995 Apr; 10(8):1475-83. PubMed ID: 7537362 [TBL] [Abstract][Full Text] [Related]
16. The in vitro and in vivo phosphotyrosine map of activated MuSK. Watty A; Neubauer G; Dreger M; Zimmer M; Wilm M; Burden SJ Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4585-90. PubMed ID: 10781064 [TBL] [Abstract][Full Text] [Related]
17. Identification of major tyrosine phosphorylation sites in the human insulin receptor substrate Gab-1 by insulin receptor kinase in vitro. Lehr S; Kotzka J; Herkner A; Sikmann A; Meyer HE; Krone W; Müller-Wieland D Biochemistry; 2000 Sep; 39(35):10898-907. PubMed ID: 10978177 [TBL] [Abstract][Full Text] [Related]
18. Correlation of the phosphorylation states of pp60c-src with tyrosine kinase activity: the intramolecular pY530-SH2 complex retains significant activity if Y419 is phosphorylated. Boerner RJ; Kassel DB; Barker SC; Ellis B; DeLacy P; Knight WB Biochemistry; 1996 Jul; 35(29):9519-25. PubMed ID: 8755732 [TBL] [Abstract][Full Text] [Related]
19. Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Dougher M; Terman BI Oncogene; 1999 Feb; 18(8):1619-27. PubMed ID: 10102632 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation of the ras GTPase-activating protein (GAP) by the p93c-fes protein-tyrosine kinase in vitro and formation of GAP-fes complexes via an SH2 domain-dependent mechanism. Hjermstad SJ; Briggs SD; Smithgall TE Biochemistry; 1993 Oct; 32(39):10519-25. PubMed ID: 7691175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]