These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 10572140)
1. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. Zheng G; Yan LZ; Vederas JC; Zuber P J Bacteriol; 1999 Dec; 181(23):7346-55. PubMed ID: 10572140 [TBL] [Abstract][Full Text] [Related]
2. Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. Zheng G; Hehn R; Zuber P J Bacteriol; 2000 Jun; 182(11):3266-73. PubMed ID: 10809709 [TBL] [Abstract][Full Text] [Related]
3. Dual control of sbo-alb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis. Nakano MM; Zheng G; Zuber P J Bacteriol; 2000 Jun; 182(11):3274-7. PubMed ID: 10809710 [TBL] [Abstract][Full Text] [Related]
4. Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Stein T; Düsterhus S; Stroh A; Entian KD Appl Environ Microbiol; 2004 Apr; 70(4):2349-53. PubMed ID: 15066831 [TBL] [Abstract][Full Text] [Related]
5. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain. Khochamit N; Siripornadulsil S; Sukon P; Siripornadulsil W Microbiol Res; 2015 Jan; 170():36-50. PubMed ID: 25440998 [TBL] [Abstract][Full Text] [Related]
6. Oxygen-Limiting Growth Conditions and Deletion of the Transition State Regulator Protein Abrb in Bacillus subtilis 6633 Result in an Increase in Subtilosin Production and a Decrease in Subtilin Production. Stein T Probiotics Antimicrob Proteins; 2020 Jun; 12(2):725-731. PubMed ID: 30980290 [TBL] [Abstract][Full Text] [Related]
7. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Stein T; Borchert S; Kiesau P; Heinzmann S; Klöss S; Klein C; Helfrich M; Entian KD Mol Microbiol; 2002 Apr; 44(2):403-16. PubMed ID: 11972779 [TBL] [Abstract][Full Text] [Related]
8. Characterization of subtilosin gene in wild type Bacillus spp. and possible physiological role. Alajlani MM Sci Rep; 2022 Jun; 12(1):10521. PubMed ID: 35732659 [TBL] [Abstract][Full Text] [Related]
9. Isolation of a variant of subtilosin A with hemolytic activity. Huang T; Geng H; Miyyapuram VR; Sit CS; Vederas JC; Nakano MM J Bacteriol; 2009 Sep; 191(18):5690-6. PubMed ID: 19633086 [TBL] [Abstract][Full Text] [Related]
10. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. Nakano MM; Xia LA; Zuber P J Bacteriol; 1991 Sep; 173(17):5487-93. PubMed ID: 1715856 [TBL] [Abstract][Full Text] [Related]
11. Temporal regulation and forespore-specific expression of the spore photoproduct lyase gene by sigma-G RNA polymerase during Bacillus subtilis sporulation. Pedraza-Reyes M; Gutiérrez-Corona F; Nicholson WL J Bacteriol; 1994 Jul; 176(13):3983-91. PubMed ID: 8021181 [TBL] [Abstract][Full Text] [Related]
12. The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Flühe L; Knappe TA; Gattner MJ; Schäfer A; Burghaus O; Linne U; Marahiel MA Nat Chem Biol; 2012 Feb; 8(4):350-7. PubMed ID: 22366720 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Nakano MM; Corbell N; Besson J; Zuber P Mol Gen Genet; 1992 Mar; 232(2):313-21. PubMed ID: 1557038 [TBL] [Abstract][Full Text] [Related]
14. Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters. Kleerebezem M; Bongers R; Rutten G; de Vos WM; Kuipers OP Peptides; 2004 Sep; 25(9):1415-24. PubMed ID: 15374645 [TBL] [Abstract][Full Text] [Related]
15. The citrulline biosynthetic operon, argC-F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by Spo0A. O'Reilly M; Woodson K; Dowds BC; Devine KM Mol Microbiol; 1994 Jan; 11(1):87-98. PubMed ID: 7511775 [TBL] [Abstract][Full Text] [Related]
16. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. Nakano MM; Marahiel MA; Zuber P J Bacteriol; 1988 Dec; 170(12):5662-8. PubMed ID: 2848009 [TBL] [Abstract][Full Text] [Related]
17. Identification of flagellar synthesis regulatory and structural genes in a sigma D-dependent operon of Bacillus subtilis. Mirel DB; Lauer P; Chamberlin MJ J Bacteriol; 1994 Aug; 176(15):4492-500. PubMed ID: 8045879 [TBL] [Abstract][Full Text] [Related]
18. Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant. Agaisse H; Lereclus D J Bacteriol; 1994 Aug; 176(15):4734-41. PubMed ID: 8045904 [TBL] [Abstract][Full Text] [Related]
19. Identification and Characterization of a Bacteriocin from the Newly Isolated Hong SW; Kim JH; Cha HA; Chung KS; Bae HJ; Park WS; Ham JS; Park BY; Oh MH J Microbiol Biotechnol; 2022 Nov; 32(11):1462-1470. PubMed ID: 36310361 [TBL] [Abstract][Full Text] [Related]
20. Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. Henriques AO; Beall BW; Roland K; Moran CP J Bacteriol; 1995 Jun; 177(12):3394-406. PubMed ID: 7768848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]