BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 10572200)

  • 1. The use of MTDSC to assess the amorphous phase content of a micronized drug substance.
    Guinot S; Leveiller F
    Int J Pharm; 1999 Dec; 192(1):63-75. PubMed ID: 10572200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of heat of adsorption to quantify amorphous content in milled pharmaceutical powders.
    Alam S; Omar M; Gaisford S
    Int J Pharm; 2014 Jan; 459(1-2):19-22. PubMed ID: 24315924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The detection of amorphous material in a nominally crystalline drug using modulated temperature DSC--a case study.
    Saklatvala R; Royall PG; Craig DQ
    Int J Pharm; 1999 Dec; 192(1):55-62. PubMed ID: 10572199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance.
    Alie J; Menegotto J; Cardon P; Duplaa H; Caron A; Lacabanne C; Bauer M
    J Pharm Sci; 2004 Jan; 93(1):218-33. PubMed ID: 14648651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of moisture uptake effects on the glass transitional behaviour of an amorphous drug using modulated temperature DSC.
    Royall PG; Craig DQ; Doherty C
    Int J Pharm; 1999 Dec; 192(1):39-46. PubMed ID: 10572197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using thermally stimulated current (TSC) to investigate disorder in micronized drug substance produced at different milling energies.
    Forcino R; Brum J; Galop M; Sun Y
    Pharm Res; 2010 Oct; 27(10):2234-41. PubMed ID: 20697781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid assessment of the structural relaxation behavior of amorphous pharmaceutical solids: effect of residual water on molecular mobility.
    Miller DP; Lechuga-Ballesteros D
    Pharm Res; 2006 Oct; 23(10):2291-305. PubMed ID: 16955371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of low levels (<10%) of amorphous content in micronised active batches using dynamic vapour sorption and isothermal microcalorimetry.
    Mackin L; Zanon R; Park JM; Foster K; Opalenik H; Demonte M
    Int J Pharm; 2002 Jan; 231(2):227-36. PubMed ID: 11755274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of DMA for the detection of amorphous content in pharmaceutical powdered materials.
    Royall PG; Huang CY; Tang SW; Duncan J; Van-de-Velde G; Brown MB
    Int J Pharm; 2005 Sep; 301(1-2):181-91. PubMed ID: 16026947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of low levels of the amorphous phase in crystalline pharmaceutical materials by thermally stimulated current spectrometry.
    Venkatesh GM; Barnett ME; Owusu-Fordjour C; Galop M
    Pharm Res; 2001 Jan; 18(1):98-103. PubMed ID: 11336360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic vapor sorption as a tool for characterization and quantification of amorphous content in predominantly crystalline materials.
    Sheokand S; Modi SR; Bansal AK
    J Pharm Sci; 2014 Nov; 103(11):3364-3376. PubMed ID: 25213429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Phase Separation Propensity for Amorphous Spray Dried Dispersions.
    McNamara D; Yin S; Pan D; Crull G; Timmins P; Vig B
    Mol Pharm; 2017 Feb; 14(2):377-385. PubMed ID: 28068097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential of high speed DSC (hyper-DSC) for the detection and quantification of small amounts of amorphous content in predominantly crystalline samples.
    Saunders M; Podluii K; Shergill S; Buckton G; Royall P
    Int J Pharm; 2004 Apr; 274(1-2):35-40. PubMed ID: 15072780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of low levels of amorphous content in sucrose by hyperDSC.
    Lappalainen M; Pitkänen I; Harjunen P
    Int J Pharm; 2006 Jan; 307(2):150-5. PubMed ID: 16288841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of low amounts of amorphous content in hydrophobic active pharmaceutical ingredients with dynamic organic vapor sorption.
    Müller T; Schiewe J; Smal R; Weiler C; Wolkenhauer M; Steckel H
    Eur J Pharm Biopharm; 2015 May; 92():102-11. PubMed ID: 25779351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Process induced disorder in crystalline materials: differentiating defective crystals from the amorphous form of griseofulvin.
    Feng T; Pinal R; Carvajal MT
    J Pharm Sci; 2008 Aug; 97(8):3207-21. PubMed ID: 17990307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation into the thermal behaviour of an amorphous drug using low frequency dielectric spectroscopy and modulated temperature differential scanning calorimetry.
    He R; Craig DQ
    J Pharm Pharmacol; 2001 Jan; 53(1):41-8. PubMed ID: 11206191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the degree of disorder in micronized salbutamol sulfate using moisture sorption analysis.
    Gorny M; Jakobs M; Mykhaylova V; Urbanetz NA
    Drug Dev Ind Pharm; 2007 Mar; 33(3):235-43. PubMed ID: 17454056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of low levels of amorphous content in crystalline celecoxib using dynamic vapor sorption (DVS).
    Sheokand S; Modi SR; Bansal AK
    Eur J Pharm Biopharm; 2016 May; 102():77-86. PubMed ID: 26948976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of spray-dried co-amorphous drug-amino acid salts.
    Jensen KT; Blaabjerg LI; Lenz E; Bohr A; Grohganz H; Kleinebudde P; Rades T; Löbmann K
    J Pharm Pharmacol; 2016 May; 68(5):615-24. PubMed ID: 26245703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.