These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 10572259)
21. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669 [TBL] [Abstract][Full Text] [Related]
22. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions]. Zhang HM; Yao SJ; Peng LF; Shimizu K Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613 [TBL] [Abstract][Full Text] [Related]
23. Physiological properties of Saccharomyces cerevisiae from which hexokinase II has been deleted. Diderich JA; Raamsdonk LM; Kruckeberg AL; Berden JA; Van Dam K Appl Environ Microbiol; 2001 Apr; 67(4):1587-93. PubMed ID: 11282609 [TBL] [Abstract][Full Text] [Related]
25. Overproduction of glycolytic enzymes in yeast. Schaaff I; Heinisch J; Zimmermann FK Yeast; 1989; 5(4):285-90. PubMed ID: 2528863 [TBL] [Abstract][Full Text] [Related]
26. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. Schoondermark-Stolk SA; Tabernero M; Chapman J; Ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J FEMS Yeast Res; 2005 May; 5(8):757-66. PubMed ID: 15851104 [TBL] [Abstract][Full Text] [Related]
27. Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses. Visser D; van Zuylen GA; van Dam JC; Eman MR; Pröll A; Ras C; Wu L; van Gulik WM; Heijnen JJ Biotechnol Bioeng; 2004 Oct; 88(2):157-67. PubMed ID: 15449293 [TBL] [Abstract][Full Text] [Related]
28. Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase. van Vaeck C; Wera S; van Dijck P; Thevelein JM Biochem J; 2001 Jan; 353(Pt 1):157-162. PubMed ID: 11115409 [TBL] [Abstract][Full Text] [Related]
29. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. Pham TK; Wright PC J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174 [TBL] [Abstract][Full Text] [Related]
30. Chronic ethanol consumption decreases mitochondrial and glycolytic production of ATP in liver. Young TA; Bailey SM; Van Horn CG; Cunningham CC Alcohol Alcohol; 2006; 41(3):254-60. PubMed ID: 16571619 [TBL] [Abstract][Full Text] [Related]
31. Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae. Yazawa H; Iwahashi H; Uemura H Yeast; 2007 Jul; 24(7):551-60. PubMed ID: 17506111 [TBL] [Abstract][Full Text] [Related]
32. Fermentative glycolysis with purified Escherichia coli enzymes for in vitro ATP production and evaluating an engineered enzyme. Stevenson BJ; Liu JW; Kuchel PW; Ollis DL J Biotechnol; 2012 Jan; 157(1):113-23. PubMed ID: 21963590 [TBL] [Abstract][Full Text] [Related]
33. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Shenton D; Grant CM Biochem J; 2003 Sep; 374(Pt 2):513-9. PubMed ID: 12755685 [TBL] [Abstract][Full Text] [Related]
34. Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: beyond its allosteric effects on glycolytic and gluconeogenic enzymes. Wu C; Khan SA; Peng LJ; Lange AJ Adv Enzyme Regul; 2006; 46():72-88. PubMed ID: 16860376 [TBL] [Abstract][Full Text] [Related]
35. Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Peter Smits H; Hauf J; Müller S; Hobley TJ; Zimmermann FK; Hahn-Hägerdal B; Nielsen J; Olsson L Yeast; 2000 Oct; 16(14):1325-34. PubMed ID: 11015729 [TBL] [Abstract][Full Text] [Related]
36. Measurements of intracellular ATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae. Ytting CK; Fuglsang AT; Hiltunen JK; Kastaniotis AJ; Özalp VC; Nielsen LJ; Olsen LF Integr Biol (Camb); 2012 Jan; 4(1):99-107. PubMed ID: 22134619 [TBL] [Abstract][Full Text] [Related]
37. Construction of phosphatidylethanolamine-less strain of Saccharomyces cerevisiae. Effect on amino acid transport. Robl I; Grassl R; Tanner W; Opekarová M Yeast; 2001 Feb; 18(3):251-60. PubMed ID: 11180458 [TBL] [Abstract][Full Text] [Related]
38. Metabolomics of supragingival plaque and oral bacteria. Takahashi N; Washio J; Mayanagi G J Dent Res; 2010 Dec; 89(12):1383-8. PubMed ID: 20924070 [TBL] [Abstract][Full Text] [Related]
39. Systematic analysis of S. cerevisiae chromosome VIII genes. Niedenthal R; Riles L; Güldener U; Klein S; Johnston M; Hegemann JH Yeast; 1999 Dec; 15(16):1775-96. PubMed ID: 10590466 [TBL] [Abstract][Full Text] [Related]
40. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium. Kitanovic A; Walther T; Loret MO; Holzwarth J; Kitanovic I; Bonowski F; Van Bui N; Francois JM; Wölfl S FEMS Yeast Res; 2009 Jun; 9(4):535-51. PubMed ID: 19341380 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]