These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 10572636)

  • 1. Limited T4 exonuclease activity and partial fill-in expand insertion site options for PCR subcloning.
    Green N; Vu S; Farahmand S; Sharp SB
    Biotechniques; 1999 Nov; 27(5):914-6. PubMed ID: 10572636
    [No Abstract]   [Full Text] [Related]  

  • 2. Polishing with T4 or Pfu polymerase increases the efficiency of cloning of PCR fragments.
    Costa GL; Weiner MP
    Nucleic Acids Res; 1994 Jun; 22(12):2423. PubMed ID: 8036174
    [No Abstract]   [Full Text] [Related]  

  • 3. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site.
    Blanca G; Delagoutte E; Tanguy le Gac N; Johnson NP; Baldacci G; Villani G
    Biochem J; 2007 Mar; 402(2):321-9. PubMed ID: 17064253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DISEC-TRISEC: di- and trinucleotide-sticky-end cloning of PCR-amplified DNA.
    Dietmaier W; Fabry S; Schmitt R
    Nucleic Acids Res; 1993 Jul; 21(15):3603-4. PubMed ID: 8346048
    [No Abstract]   [Full Text] [Related]  

  • 6. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
    Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH
    Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directional cloning of an oligonucleotide fragment into a single restriction site.
    Yang YS; Yang MC; Watson WJ; Tucker PW; Capra JD
    J Immunol Methods; 1995 Apr; 181(1):137-40. PubMed ID: 7730662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of the 3'-5' exonuclease of the replicative T4 DNA polymerase allows translesion DNA synthesis at an abasic site.
    Tanguy Le Gac N; Delagoutte E; Germain M; Villani G
    J Mol Biol; 2004 Mar; 336(5):1023-34. PubMed ID: 15037066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase.
    Otto MR; Bloom LB; Goodman MF; Beechem JM
    Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using T4 DNA polymerase to generate clonable PCR products.
    Wang K
    Methods Mol Biol; 2002; 192():121-4. PubMed ID: 12494644
    [No Abstract]   [Full Text] [Related]  

  • 11. An optimized recipe for cloning of the polymerase chain reaction-amplified DNA inserts into plasmid vectors.
    Topcu Z
    Acta Biochim Pol; 2000; 47(3):841-6. PubMed ID: 11310983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of DNA polymerase exonucleolytic proofreading activity: studies of bacteriophage T4 "antimutator" DNA polymerases.
    Reha-Krantz LJ
    Genetics; 1998 Apr; 148(4):1551-7. PubMed ID: 9560374
    [No Abstract]   [Full Text] [Related]  

  • 13. Direct ligation of human CD4 polymerase chain reaction fragment into vectors at specific restriction sites with positional heterostagger cloning.
    Felfoldi F; Kupihar Z; Bottka S; Puskas LG
    Anal Biochem; 1997 Nov; 253(2):275-7. PubMed ID: 9367518
    [No Abstract]   [Full Text] [Related]  

  • 14. Efficient creation of sequencing libraries from blunt-ended restriction enzyme fragments.
    Hassard S; Ward G
    Biotechniques; 1995 Mar; 18(3):396-8, 400. PubMed ID: 7779385
    [No Abstract]   [Full Text] [Related]  

  • 15. Use of M13 ping-pong vectors and T4 DNA polymerase in oligodeoxynucleotide-directed mutagenesis.
    Waye MM
    Methods Enzymol; 1993; 217():258-70. PubMed ID: 8386290
    [No Abstract]   [Full Text] [Related]  

  • 16. Residues at the carboxy terminus of T4 DNA polymerase are important determinants for interaction with the polymerase accessory proteins.
    Goodrich LD; Lin TC; Spicer EK; Jones C; Konigsberg WH
    Biochemistry; 1997 Aug; 36(34):10474-81. PubMed ID: 9265627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of recombinant DNA by exonuclease recession.
    Yang YS; Watson WJ; Tucker PW; Capra JD
    Nucleic Acids Res; 1993 Apr; 21(8):1889-93. PubMed ID: 8388100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General method for site-directed mutagenesis and cloning of synthetic single-stranded DNA in circular vectors.
    Drutsa VL; Kaberdin VR
    Nucleic Acids Symp Ser; 1991; (24):300. PubMed ID: 1841357
    [No Abstract]   [Full Text] [Related]  

  • 19. Site-directed mutagenesis using Pfu DNA polymerase and T4 DNA ligase.
    Adereth Y; Champion KJ; Hsu T; Dammai V
    Biotechniques; 2005 Jun; 38(6):864, 866, 868. PubMed ID: 16018545
    [No Abstract]   [Full Text] [Related]  

  • 20. Addendum: Site-directed mutagenesis using Pfu DNA polymerase and T4 DNA ligase.
    Biotechniques; 2005 Sep; 39(3):328. PubMed ID: 16208829
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.