These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 105734)

  • 1. On the reconstitution of laccase from the Chinese lacquer tree.
    Hauenstein BL; McMillin DR
    Biochem Biophys Res Commun; 1978 Nov; 85(1):505-10. PubMed ID: 105734
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidation-reduction potentials of the electron acceptors in laccases and stellacyanin.
    Reinhammar BR
    Biochim Biophys Acta; 1972 Aug; 275(2):245-59. PubMed ID: 4342730
    [No Abstract]   [Full Text] [Related]  

  • 3. Anaerobic oxidation-reduction titrations of fungal laccase. Evidence for several high potential electron-accepting sites.
    Fee JA; Malkin R; Malmström BG; Vänngård T
    J Biol Chem; 1969 Aug; 244(15):4200-7. PubMed ID: 4308170
    [No Abstract]   [Full Text] [Related]  

  • 4. The kinetics of the anaerobic reduction of fungal laccase B.
    Andréasson LE; Malmström BG; Strömberg C; Vänngård T
    Eur J Biochem; 1973 May; 34(3):434-9. PubMed ID: 4351846
    [No Abstract]   [Full Text] [Related]  

  • 5. Magnetic susceptibility of lacquer tree laccase.
    Moss TH; Vänngård T
    Biochim Biophys Acta; 1974 Nov; 371(1):39-43. PubMed ID: 4371856
    [No Abstract]   [Full Text] [Related]  

  • 6. Optical properties of japanese-lacquer-tree (Rhus vernicifera) laccase depleted of type 2 copper(II). Involvement of type-2 copper(II) in the 330nm chromophore.
    Morpurgo L; Graziani MT; Finazzi-Agrò A; Rotilio G; Mondovì B
    Biochem J; 1980 May; 187(2):361-6. PubMed ID: 6446906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titrations with ferrocyanide of japanese-lacquer-tree (Rhus vernicifera) laccase and of the type 2 copper-depleted enzyme. Interrelation of the copper sites.
    Morpurgo L; Graziani MT; Desideri A; Rotilio G
    Biochem J; 1980 May; 187(2):367-70. PubMed ID: 6446907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascorbate oxidase. Spectral characteristics of the enzyme.
    Lee MH; Dawson CR
    J Biol Chem; 1973 Oct; 248(19):6603-9. PubMed ID: 4355494
    [No Abstract]   [Full Text] [Related]  

  • 9. Kinetics of the reduction of Rhus vernicifera laccase by ferrocyanide ion.
    Holwerda RA; Gray HB
    J Am Chem Soc; 1975 Oct; 97(21):6036-41. PubMed ID: 126253
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on horseradish peroxidase. 13. The kinetic effect of cyanide on the oxidation-reduction cycle.
    Cotton ML; Dunford HB; Raycheba JM
    Can J Biochem; 1973 May; 51(5):627-31. PubMed ID: 4706838
    [No Abstract]   [Full Text] [Related]  

  • 11. A PROCEDURE WHICH DEMONSTRATES SUBSTRATE INHIBITION OF TYROSINASE.
    KEAN EA
    Biochim Biophys Acta; 1964 Dec; 92():602-4. PubMed ID: 14264893
    [No Abstract]   [Full Text] [Related]  

  • 12. The mechanism of laccase-catalyzed oxidations: kinetic evidence for the involvement of several electron-accepting sites in the enzyme.
    Malmström BG; Agrò AF; Antonini E
    Eur J Biochem; 1969 Jun; 9(3):383-91. PubMed ID: 4978609
    [No Abstract]   [Full Text] [Related]  

  • 13. The state of copper in stellacyanin and laccase from the lacquer tree Rhus vernicifera.
    Malmström BG; Reinhammar B; Vänngård T
    Biochim Biophys Acta; 1970 Apr; 205(1):48-57. PubMed ID: 4314765
    [No Abstract]   [Full Text] [Related]  

  • 14. [ON THE COUPLED OXIDATION OF 1,4-BENZENEDIOL AND ASCORBIC ACID BY POTATO TYROSINASE. MECHANISM OF THE REACTION].
    LEGRAND G; NEUMANN J; LEHONGRE G
    Bull Soc Chim Biol (Paris); 1963 Nov; 45():1159-70. PubMed ID: 14095834
    [No Abstract]   [Full Text] [Related]  

  • 15. Oxidation of human serum albumin by polyphenol oxidase.
    Gemant A
    Mol Biol Rep; 1974 Sep; 1(7):423-7. PubMed ID: 4213670
    [No Abstract]   [Full Text] [Related]  

  • 16. Kinetic studies of Rhus vernicifera laccase. Role of the metal centers in electron transfer.
    Andréasson LE; Reinhammar B
    Biochim Biophys Acta; 1976 Oct; 445(3):579-97. PubMed ID: 9990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence enhancement of laccase induced by reduction of Cu(II) sites.
    Goldberg M; Pecht I
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4684-7. PubMed ID: 4216021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HILL ACTIVITY IN CELL-FREE PREPARATIONS OF A BLUE-GREEN ALGA.
    SUSOR WA; KROGMANN DW
    Biochim Biophys Acta; 1964 Jul; 88():11-9. PubMed ID: 14203139
    [No Abstract]   [Full Text] [Related]  

  • 19. Cobalt II substitution in the type 1 site of the multi-copper oxidase Rhus laccase.
    Larrabee JA; Spiro TG
    Biochem Biophys Res Commun; 1979 Jun; 88(3):753-60. PubMed ID: 157133
    [No Abstract]   [Full Text] [Related]  

  • 20. One-electron and two-electron transfer mechanisms in enzymic oxidation-reduction reactions.
    Yamazaki I
    Adv Biophys; 1971; 2():33-76. PubMed ID: 4146736
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.