BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10573688)

  • 1. Mutual amino acid catalysis in salt-induced peptide formation supports this mechanism's role in prebiotic peptide evolution.
    Suwannachot Y; Rode BM
    Orig Life Evol Biosph; 1999 Oct; 29(5):463-71. PubMed ID: 10573688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine and diglycine as possible catalytic factors in the prebiotic evolution of peptides.
    Plankensteiner K; Righi A; Rode BM
    Orig Life Evol Biosph; 2002 Jun; 32(3):225-36. PubMed ID: 12227427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic effects of histidine enantiomers and glycine on the formation of dileucine and dimethionine in the salt-induced peptide formation reaction.
    Li F; Fitz D; Fraser DG; Rode BM
    Amino Acids; 2010 Jan; 38(1):287-94. PubMed ID: 19214703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The catalytic effect of L- and D-histidine on alanine and lysine peptide formation.
    Fitz D; Jakschitz T; Rode BM
    J Inorg Biochem; 2008 Dec; 102(12):2097-102. PubMed ID: 18760483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential amino acid sequences in alumina-catalyzed peptide bond formation.
    Bujdák J; Rode BM
    J Inorg Biochem; 2002 May; 90(1-2):1-7. PubMed ID: 12009249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on the mechanism of the salt-induced peptide formation.
    Schwendinger MG; Rode BM
    Orig Life Evol Biosph; 1992; 22(6):349-59. PubMed ID: 1465297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytically increased prebiotic peptide formation: ditryptophan, dilysine, and diserine.
    Plankensteiner K; Reiner H; Rode BM
    Orig Life Evol Biosph; 2005 Oct; 35(5):411-9. PubMed ID: 16231205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis of dialanine formation by glycine in the salt-induced peptide formation reaction.
    Suwannachot Y; Rode BM
    Orig Life Evol Biosph; 1998 Feb; 28(1):79-90. PubMed ID: 11536857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic effects of glycine on prebiotic divaline and diproline formation.
    Plankensteiner K; Reiner H; Rode BM
    Peptides; 2005 Jul; 26(7):1109-12. PubMed ID: 15949627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The possible influence of L-histidine on the origin of the first peptides on the primordial Earth.
    Reiner H; Plankensteiner K; Fitz D; Rode BM
    Chem Biodivers; 2006 Jun; 3(6):611-21. PubMed ID: 17193295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaporation cycle experiments--a simulation of salt-induced peptide synthesis under possible prebiotic conditions.
    Saetia S; Liedl KR; Eder AH; Rode BM
    Orig Life Evol Biosph; 1993 Jun; 23(3):167-76. PubMed ID: 8316349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The combination of salt induced peptide formation reaction and clay catalysis: a way to higher peptides under primitive earth conditions.
    Rode BM; Son HL; Suwannachot Y
    Orig Life Evol Biosph; 1999 May; 29(3):273-86. PubMed ID: 10465717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu(II)-catalyzed reactions in ternary [Cu(AA)(AA - H)]+ complexes (AA = Gly, Ala, Val, Leu, Ile, t-Leu, Phe).
    Wang P; Ohanessian G; Wesdemiotis C
    Eur J Mass Spectrom (Chichester); 2009; 15(2):325-35. PubMed ID: 19423917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prebiotic Formation of Catalytically Active Dipeptides via Trimetaphosphate Activation.
    Chi Y; Li X; Chen Y; Zhang Y; Liu Y; Gao X; Zhao Y
    Chem Asian J; 2022 Dec; 17(24):e202200926. PubMed ID: 36308060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methionine peptide formation under primordial earth conditions.
    Li F; Fitz D; Fraser DG; Rode BM
    J Inorg Biochem; 2008; 102(5-6):1212-7. PubMed ID: 18262274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine in the salt-induced peptide formation reaction: enantioselectivity facilitated by glycine, L- and D-histidine.
    Li F; Fitz D; Fraser DG; Rode BM
    Amino Acids; 2010 Jul; 39(2):579-85. PubMed ID: 20099003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diketopiperazine-mediated peptide formation in aqueous solution.
    Nagayama M; Takaoka O; Inomata K; Yamagata Y
    Orig Life Evol Biosph; 1990; 20(3-4):249-57. PubMed ID: 2290686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BITTER PEPTIDE ISOLATED FROM MILK CULTURES OF STREPTOCOCCUS CREMORIS.
    GORDON DF; SPECK ML
    Appl Microbiol; 1965 Jul; 13(4):537-42. PubMed ID: 14339258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocell Self-Assembly Driven by Sodium Trimetaphosphate.
    Chen Y; Yan L; Chi Y; Liu Y; Zhao Y
    Chemistry; 2023 Jul; 29(39):e202300512. PubMed ID: 37086198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of peptides from amino acids and ATP with lysine-rich proteinoid.
    Nakashima T; Fox SW
    J Mol Evol; 1980 May; 15(2):161-8. PubMed ID: 6249936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.