These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 10573901)

  • 1. Three-dimensional tongue surface reconstruction: practical considerations for ultrasound data.
    Lundberg AJ; Stone M
    J Acoust Soc Am; 1999 Nov; 106(5):2858-67. PubMed ID: 10573901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional tongue surface shapes of English consonants and vowels.
    Stone M; Lundberg A
    J Acoust Soc Am; 1996 Jun; 99(6):3728-37. PubMed ID: 8655804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A normative-speaker validation study of two indices developed to quantify tongue dorsum activity from midsagittal tongue shapes.
    Zharkova N
    Clin Linguist Phon; 2013 Jul; 27(6-7):484-96. PubMed ID: 23651147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A guide to analysing tongue motion from ultrasound images.
    Stone M
    Clin Linguist Phon; 2005; 19(6-7):455-501. PubMed ID: 16206478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional model of tongue movement based on ultrasound and x-ray microbeam data.
    Stone M
    J Acoust Soc Am; 1990 May; 87(5):2207-17. PubMed ID: 2189921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring tongue shapes and positions with ultrasound imaging: a validation experiment using an articulatory model.
    Ménard L; Aubin J; Thibeault M; Richard G
    Folia Phoniatr Logop; 2012; 64(2):64-72. PubMed ID: 22212175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 'trough effect': an ultrasound study.
    Vazquez-Alvarez Y; Hewlett N
    Phonetica; 2007; 64(2-3):105-21. PubMed ID: 17914279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal visualization of the tongue surface using ultrasound and Kriging (SURFACES).
    Parthasarathy V; Stone M; Prince JL
    Clin Linguist Phon; 2005; 19(6-7):529-44. PubMed ID: 16206481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound Images of the Tongue: A Tutorial for Assessment and Remediation of Speech Sound Errors.
    Preston JL; McAllister Byun T; Boyce SE; Hamilton S; Tiede M; Phillips E; Rivera-Campos A; Whalen DH
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative three-dimensional ultrasound analysis of tongue protrusion, grooving and symmetry: data from 12 normal speakers and a partial glossectomee.
    Bressmann T; Thind P; Uy C; Bollig C; Gilbert RW; Irish JC
    Clin Linguist Phon; 2005; 19(6-7):573-88. PubMed ID: 16206485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vocal tract normalization for midsagittal articulatory recovery with analysis-by-synthesis.
    McGowan RS; Cushing S
    J Acoust Soc Am; 1999 Aug; 106(2):1090-105. PubMed ID: 10462814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of speech production in upright and supine position.
    Stone M; Stock G; Bunin K; Kumar K; Epstein M; Kambhamettu C; Li M; Parthasarathy V; Prince J
    J Acoust Soc Am; 2007 Jul; 122(1):532-41. PubMed ID: 17614510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences between the production of [s] and [ʃ] in the speech of adults, typically developing children, and children with speech sound disorders: An ultrasound study.
    Francisco DT; Wertzner HF
    Clin Linguist Phon; 2017; 31(5):375-390. PubMed ID: 28085504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear degrees of freedom in speech production: analysis of cineradio- and labio-film data and articulatory-acoustic modeling.
    Beautemps D; Badin P; Bailly G
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2165-80. PubMed ID: 11386568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting midsagittal pharynx shape from tongue position during vowel production.
    Whalen DH; Kang AM; Magen HS; Fulbright RK; Gore JC
    J Speech Lang Hear Res; 1999 Jun; 42(3):592-603. PubMed ID: 10391625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of voice focus on tongue movement in speech.
    Bressmann T; de Boer G; Marino VC; Fabron EM; Berti LC
    Clin Linguist Phon; 2017; 31(3):212-221. PubMed ID: 27726458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust contour tracking in ultrasound tongue image sequences.
    Xu K; Yang Y; Stone M; Jaumard-Hakoun A; Leboullenger C; Dreyfus G; Roussel P; Denby B
    Clin Linguist Phon; 2016; 30(3-5):313-27. PubMed ID: 26786063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two cross-linguistic factors underlying tongue shapes for vowels.
    Nix DA; Papcun G; Hogden J; Zlokarnik I
    J Acoust Soc Am; 1996 Jun; 99(6):3707-17. PubMed ID: 8655802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-frame-rate full-vocal-tract 3D dynamic speech imaging.
    Fu M; Barlaz MS; Holtrop JL; Perry JL; Kuehn DP; Shosted RK; Liang ZP; Sutton BP
    Magn Reson Med; 2017 Apr; 77(4):1619-1629. PubMed ID: 27099178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coronal view ultrasound imaging of movement in different segments of the tongue during paced recital: findings from four normal speakers and a speaker with partial glossectomy.
    Bressmann T; Flowers H; Wong W; Irish JC
    Clin Linguist Phon; 2010 Aug; 24(8):589-601. PubMed ID: 20524849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.