These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10574124)

  • 1. Antidromic discharges of dorsal root afferents in the neonatal rat.
    Vinay L; Brocard F; Fellippa-Marques S; Clarac F
    J Physiol Paris; 1999; 93(4):359-67. PubMed ID: 10574124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antidromic discharges of dorsal root afferents and inhibition of the lumbar monosynaptic reflex in the neonatal rat.
    Vinay L; Clarac F
    Neuroscience; 1999 Apr; 90(1):165-76. PubMed ID: 10188943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous and locomotor-related GABAergic input onto primary afferents in the neonatal rat.
    Fellippa-Marques S; Vinay L; Clarac F
    Eur J Neurosci; 2000 Jan; 12(1):155-64. PubMed ID: 10651870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1998 May; 79(5):2581-92. PubMed ID: 9582230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary afferent terminals acting as excitatory interneurons contribute to spontaneous motor activities in the immature spinal cord.
    Bos R; Brocard F; Vinay L
    J Neurosci; 2011 Jul; 31(28):10184-8. PubMed ID: 21752994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of spinal ORL-1 receptors prevents acute cutaneous neurogenic inflammation: role of nociceptin-induced suppression of primary afferent depolarization.
    Dong XW; Williams PA; Jia YP; Priestley T
    Pain; 2002 Apr; 96(3):309-318. PubMed ID: 11973003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle afferent excitability testing in spinal root-intact rats: dissociating peripheral afferent and efferent volleys generated by intraspinal microstimulation.
    Tomatsu S; Kim G; Confais J; Seki K
    J Neurophysiol; 2017 Feb; 117(2):796-807. PubMed ID: 27974451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depression of primary afferent-evoked responses by GR71251 in the isolated spinal cord of the neonatal rat.
    Guo JZ; Yoshioka K; Yanagisawa M; Hosoki R; Hagan RM; Otsuka M
    Br J Pharmacol; 1993 Nov; 110(3):1142-8. PubMed ID: 7507777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The excitatory and inhibitory modulation of primary afferent fibre-evoked responses of ventral roots in the neonatal rat spinal cord exerted by nitric oxide.
    Kurihara T; Yoshioka K
    Br J Pharmacol; 1996 Aug; 118(7):1743-53. PubMed ID: 8842440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antidromic discharges in dorsal roots of decerebrate cats. I. Studies at rest and during fictive locomotion.
    Beloozerova I; Rossignol S
    Brain Res; 1999 Oct; 846(1):87-105. PubMed ID: 10536216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antidromic discharges in dorsal roots of decerebrate cats. II: studies during treadmill locomotion.
    Beloozerova IN; Rossignol S
    Brain Res; 2004 Jan; 996(2):227-36. PubMed ID: 14697500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local and diffuse mechanisms of primary afferent depolarization and presynaptic inhibition in the rat spinal cord.
    Lidierth M
    J Physiol; 2006 Oct; 576(Pt 1):309-27. PubMed ID: 16873417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of RP 67580, a tachykinin NK1 receptor antagonist, on a primary afferent-evoked response of ventral roots in the neonatal rat spinal cord.
    Hosoki R; Yanagisawa M; Guo JZ; Yoshioka K; Maehara T; Otsuka M
    Br J Pharmacol; 1994 Dec; 113(4):1141-6. PubMed ID: 7534180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.
    García-Ramírez DL; Calvo JR; Hochman S; Quevedo JN
    PLoS One; 2014; 9(2):e89999. PubMed ID: 24587177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrasynaptic α
    Lucas-Osma AM; Li Y; Lin S; Black S; Singla R; Fouad K; Fenrich KK; Bennett DJ
    J Neurophysiol; 2018 Dec; 120(6):2953-2974. PubMed ID: 30256739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscarinic excitatory and inhibitory mechanisms involved in afferent fibre-evoked depolarization of motoneurones in the neonatal rat spinal cord.
    Kurihara T; Suzuki H; Yanagisawa M; Yoshioka K
    Br J Pharmacol; 1993 Sep; 110(1):61-70. PubMed ID: 7693289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of muscimol upon the firing frequency of large and small amplitude antidromic dorsal root action potentials in rat spinal cord in vitro.
    Bagust J; Willis WD
    Neurosci Lett; 2002 Sep; 330(2):139-42. PubMed ID: 12231431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of 4-aminopyridine on the cat spinal cord: rhythmic antidromic discharges recorded from the dorsal roots.
    Dubuc R; Rossignol S
    Brain Res; 1989 Jul; 491(2):335-48. PubMed ID: 2548666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of metabotropic glutamate receptors in the depression of GABA-mediated depolarization of frog primary afferent terminals.
    Hackman JC; Holohean AM; Davidoff RA
    Neuroscience; 1997 Dec; 81(4):1079-90. PubMed ID: 9330369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxin I, but not 4-aminopyridine, blocks the late inhibitory component of the dorsal root reflex in an isolated preparation of rat spinal cord.
    Bagust J; Zhang L; Owen D
    Brain Res; 1997 Oct; 773(1-2):181-9. PubMed ID: 9409719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.