BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 10574613)

  • 1. Solute transport analysis in pH-responsive, complexing hydrogels of poly(methacrylic acid-g-ethylene glycol).
    Lowman AM; Peppas NA
    J Biomater Sci Polym Ed; 1999; 10(9):999-1009. PubMed ID: 10574613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water, solute and protein diffusion in physiologically responsive hydrogels of poly (methacrylic acid-g-ethylene glycol).
    Bell CL; Peppas NA
    Biomaterials; 1996 Jun; 17(12):1203-18. PubMed ID: 8799505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium swelling of poly(methacrylic acid-g-ethylene glycol) hydrogels. Effect of swelling medium and synthesis conditions.
    Mathur AM; Hammonds KF; Klier J; Scranton AB
    J Control Release; 1998 Jul; 54(2):177-84. PubMed ID: 9724904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porogens in the preparation of microporous hydrogels based on poly(ethylene oxides).
    Badiger MV; McNeill ME; Graham NB
    Biomaterials; 1993 Nov; 14(14):1059-63. PubMed ID: 8312460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexation graft copolymer networks: swelling properties, calcium binding and proteolytic enzyme inhibition.
    Madsen F; Peppas NA
    Biomaterials; 1999 Sep; 20(18):1701-8. PubMed ID: 10503971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties controlling the diffusion and release of water-soluble solutes from poly(ethylene oxide) hydrogels. 1. Polymer composition.
    McNeill ME; Graham NB
    J Biomater Sci Polym Ed; 1993; 4(3):305-22. PubMed ID: 8476797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swelling/syneresis phenomena in gel-forming interpolymer complexes.
    Bell CL; Peppas NA
    J Biomater Sci Polym Ed; 1996; 7(8):671-83. PubMed ID: 8639476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly crosslinked, PEG-containing copolymers for sustained solute delivery.
    Scott RA; Peppas NA
    Biomaterials; 1999 Aug; 20(15):1371-80. PubMed ID: 10454008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of solute permeation across hydrogels composed of poly(methyl vinyl ether-co-maleic acid) and poly(ethylene glycol).
    Raj Singh TR; Woolfson AD; Donnelly RF
    J Pharm Pharmacol; 2010 Jul; 62(7):829-37. PubMed ID: 20636870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partitioning and diffusion of solutes in hydrogels of poly(ethylene oxide).
    Merrill EW; Dennison KA; Sung C
    Biomaterials; 1993 Dec; 14(15):1117-26. PubMed ID: 8130315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels.
    Serra L; Doménech J; Peppas NA
    Biomaterials; 2006 Nov; 27(31):5440-51. PubMed ID: 16828864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(MAA-co-AN) hydrogels with improved mechanical properties for theophylline controlled delivery.
    Luo Y; Zhang K; Wei Q; Liu Z; Chen Y
    Acta Biomater; 2009 Jan; 5(1):316-27. PubMed ID: 18723415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics.
    Nakamura K; Murray RJ; Joseph JI; Peppas NA; Morishita M; Lowman AM
    J Control Release; 2004 Mar; 95(3):589-99. PubMed ID: 15023469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA).
    Wu J; Xiao Z; He C; Zhu J; Ma G; Wang G; Zhang H; Xiao J; Chen S
    Acta Biomater; 2016 Aug; 40():172-181. PubMed ID: 27142255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the addition of a labile gelatin component on the degradation and solute release kinetics of a stable PEG hydrogel.
    Waldeck H; Kao WJ
    J Biomater Sci Polym Ed; 2012; 23(12):1595-611. PubMed ID: 21801489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.
    Yang Z; Zhang Y; Markland P; Yang VC
    J Biomed Mater Res; 2002 Oct; 62(1):14-21. PubMed ID: 12124782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel controlled drug delivery system based on pH-responsive hydrogels included in soft gelatin capsules.
    Frutos G; Prior-Cabanillas A; París R; Quijada-Garrido I
    Acta Biomater; 2010 Dec; 6(12):4650-6. PubMed ID: 20643229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast in situ forming poly(ethylene glycol)-poly(amido amine) hydrogels with tunable drug release properties via controllable degradation rates.
    Buwalda SJ; Bethry A; Hunger S; Kandoussi S; Coudane J; Nottelet B
    Eur J Pharm Biopharm; 2019 Jun; 139():232-239. PubMed ID: 30954658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents.
    Betancourt T; Pardo J; Soo K; Peppas NA
    J Biomed Mater Res A; 2010 Apr; 93(1):175-88. PubMed ID: 19536838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.