These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 10574780)

  • 41. Polyethylene glycol-modified hemin having peroxidase activity in organic solvents.
    Takahashi K; Matsushima A; Saito Y; Inada Y
    Biochem Biophys Res Commun; 1986 Jul; 138(1):283-8. PubMed ID: 2874801
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Peroxidase mimicking DNAzymes degrade graphene oxide.
    Kurapati R; Bianco A
    Nanoscale; 2018 Nov; 10(41):19316-19321. PubMed ID: 30306169
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nucleoapzymes: Hemin/G-Quadruplex DNAzyme-Aptamer Binding Site Conjugates with Superior Enzyme-like Catalytic Functions.
    Golub E; Albada HB; Liao WC; Biniuri Y; Willner I
    J Am Chem Soc; 2016 Jan; 138(1):164-72. PubMed ID: 26652164
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mutations in the Tetrahymena ribozyme internal guide sequence: effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity.
    Campbell TB; Cech TR
    Biochemistry; 1996 Sep; 35(35):11493-502. PubMed ID: 8784205
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of arm length asymmetry and base substitution on the activity of the 10-23 DNA enzyme.
    Cairns MJ; Hopkins TM; Witherington C; Sun LQ
    Antisense Nucleic Acid Drug Dev; 2000 Oct; 10(5):323-32. PubMed ID: 11079572
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis.
    Legault P; Herschlag D; Celander DW; Cech TR
    Nucleic Acids Res; 1992 Dec; 20(24):6613-9. PubMed ID: 1480482
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aminoacyl esterase activity of the Tetrahymena ribozyme.
    Piccirilli JA; McConnell TS; Zaug AJ; Noller HF; Cech TR
    Science; 1992 Jun; 256(5062):1420-4. PubMed ID: 1604316
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a short Ca2+-dependent deoxyribozyme with RNA cleavage activity.
    Sugimoto N; Okumoto Y
    Nucleic Acids Symp Ser; 1999; (42):281-2. PubMed ID: 10780489
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization and divalent metal-ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides.
    Faulhammer D; Famulok M
    J Mol Biol; 1997 Jun; 269(2):188-202. PubMed ID: 9191064
    [TBL] [Abstract][Full Text] [Related]  

  • 50. General peroxidase activity of G-quadruplex-hemin complexes and its application in ligand screening.
    Cheng X; Liu X; Bing T; Cao Z; Shangguan D
    Biochemistry; 2009 Aug; 48(33):7817-23. PubMed ID: 19618960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme.
    Deng M; Zhang D; Zhou Y; Zhou X
    J Am Chem Soc; 2008 Oct; 130(39):13095-102. PubMed ID: 18763776
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of the peroxidatic mode of action of catalase.
    Sichak SP; Dounce AL
    Arch Biochem Biophys; 1986 Sep; 249(2):286-95. PubMed ID: 3019241
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
    Zaug AJ; Dávila-Aponte JA; Cech TR
    Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Specificity of a DNA-based (DNAzyme) peroxidative biocatalyst.
    Rojas AM; Gonzalez PA; Antipov E; Klibanov AM
    Biotechnol Lett; 2007 Feb; 29(2):227-32. PubMed ID: 17091371
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Terbium-mediated footprinting probes a catalytic conformational switch in the antigenomic hepatitis delta virus ribozyme.
    Harris DA; Tinsley RA; Walter NG
    J Mol Biol; 2004 Aug; 341(2):389-403. PubMed ID: 15276831
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid desilylation of oligoribonucleotides at elevated temperatures: cleavage activity in ribozyme-substrate assays.
    Vinayak R; Andrus A; Hampel A
    Biomed Pept Proteins Nucleic Acids; 1995; 1(4):227-30. PubMed ID: 9346836
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evolutionary optimization of the catalytic properties of a DNA-cleaving ribozyme.
    Tsang J; Joyce GF
    Biochemistry; 1994 May; 33(19):5966-73. PubMed ID: 8180226
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site.
    Herschlag D; Cech TR
    Biochemistry; 1990 Nov; 29(44):10159-71. PubMed ID: 2271645
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme.
    Geyer CR; Sen D
    Chem Biol; 1997 Aug; 4(8):579-93. PubMed ID: 9281526
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of helical structures formed by the binding arms of DNAzymes and their substrates on catalytic activity.
    Ota N; Warashina M; Hirano K; Hatanaka K; Taira K
    Nucleic Acids Res; 1998 Jul; 26(14):3385-91. PubMed ID: 9649623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.