These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 10574977)
1. The structures of the horseradish peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest how peroxidases oxidize small phenolic substrates. Henriksen A; Smith AT; Gajhede M J Biol Chem; 1999 Dec; 274(49):35005-11. PubMed ID: 10574977 [TBL] [Abstract][Full Text] [Related]
3. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography. Henriksen A; Schuller DJ; Meno K; Welinder KG; Smith AT; Gajhede M Biochemistry; 1998 Jun; 37(22):8054-60. PubMed ID: 9609699 [TBL] [Abstract][Full Text] [Related]
4. Influence of the distal his in imparting imidazolate character to the proximal his in heme peroxidase: (1)h NMR spectroscopic study of cyanide-inhibited his42-->ala horseradish peroxidase. de Ropp JS; Sham S; Asokan A; Newmyer S; Ortiz de Montellano PR; La Mar GN J Am Chem Soc; 2002 Sep; 124(37):11029-37. PubMed ID: 12224950 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen bond network in the distal site of peroxidases: spectroscopic properties of Asn70 --> Asp horseradish peroxidase mutant. Tanaka M; Nagano S; Ishimori K; Morishima I Biochemistry; 1997 Aug; 36(32):9791-8. PubMed ID: 9245411 [TBL] [Abstract][Full Text] [Related]
6. Differential activity and structure of highly similar peroxidases. Spectroscopic, crystallographic, and enzymatic analyses of lignifying Arabidopsis thaliana peroxidase A2 and horseradish peroxidase A2. Nielsen KL; Indiani C; Henriksen A; Feis A; Becucci M; Gajhede M; Smulevich G; Welinder KG Biochemistry; 2001 Sep; 40(37):11013-21. PubMed ID: 11551197 [TBL] [Abstract][Full Text] [Related]
7. Structural analysis of the two horseradish peroxidase catalytic residue variants H42E and R38S/H42E: implications for the catalytic cycle. Meno K; Jennings S; Smith AT; Henriksen A; Gajhede M Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 2):1803-12. PubMed ID: 12351824 [TBL] [Abstract][Full Text] [Related]
8. Paramagnetic 13C and 15N NMR analyses of cyanide- (13C15N-) ligated ferric peroxidases: the push effect, not pull effect, modulates the compound I formation rate. Nonaka D; Wariishi H; Fujii H Biochemistry; 2009 Feb; 48(5):898-905. PubMed ID: 19187033 [TBL] [Abstract][Full Text] [Related]
9. An efficient proton-coupled electron-transfer process during oxidation of ferulic acid by horseradish peroxidase: coming full cycle. Derat E; Shaik S J Am Chem Soc; 2006 Oct; 128(42):13940-9. PubMed ID: 17044722 [TBL] [Abstract][Full Text] [Related]
10. Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties. Howes BD; Rodriguez-Lopez JN; Smith AT; Smulevich G Biochemistry; 1997 Feb; 36(6):1532-43. PubMed ID: 9063902 [TBL] [Abstract][Full Text] [Related]
11. Redox properties of the Fe3+/Fe2+ couple in Arthromyces ramosus class II peroxidase and its cyanide adduct. Battistuzzi G; Bellei M; De Rienzo F; Sola M J Biol Inorg Chem; 2006 Jul; 11(5):586-92. PubMed ID: 16791642 [TBL] [Abstract][Full Text] [Related]
12. Characterisation of a haem active-site mutant of horseradish peroxidase, Phe41----Val, with altered reactivity towards hydrogen peroxide and reducing substrates. Smith AT; Sanders SA; Thorneley RN; Burke JF; Bray RR Eur J Biochem; 1992 Jul; 207(2):507-19. PubMed ID: 1633806 [TBL] [Abstract][Full Text] [Related]
13. The distal glutamic acid as an acid-base catalyst in the distal site of horseradish peroxidase. Tanaka M; Ishimori K; Morishima I Biochem Biophys Res Commun; 1996 Oct; 227(2):393-9. PubMed ID: 8878526 [TBL] [Abstract][Full Text] [Related]
14. H NMR investigation of the influence of interacting sites on the dynamics and thermodynamics of substrate and ligand binding to horseradish peroxidase. La Mar GN; Hernández G; de Ropp JS Biochemistry; 1992 Sep; 31(38):9158-68. PubMed ID: 1390702 [TBL] [Abstract][Full Text] [Related]
15. Structural roles of the highly conserved glu residue in the heme distal site of peroxidases. Tanaka M; Ishimori K; Morishima I Biochemistry; 1998 Feb; 37(8):2629-38. PubMed ID: 9485413 [TBL] [Abstract][Full Text] [Related]
16. Role of arginine 38 in horseradish peroxidase. A critical residue for substrate binding and catalysis. Rodriguez-Lopez JN; Smith AT; Thorneley RN J Biol Chem; 1996 Feb; 271(8):4023-30. PubMed ID: 8626735 [TBL] [Abstract][Full Text] [Related]
17. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding. Adak S; Mazumder A; Banerjee RK Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798 [TBL] [Abstract][Full Text] [Related]
18. Binding of horseradish, lignin, and manganese peroxidases to their respective substrates. Banci L; Bertini I; Bini T; Tien M; Turano P Biochemistry; 1993 Jun; 32(22):5825-31. PubMed ID: 8504102 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the binding and reactivity of plant and mammalian peroxidases to indole derivatives by computational docking. Hallingbäck HR; Gabdoulline RR; Wade RC Biochemistry; 2006 Mar; 45(9):2940-50. PubMed ID: 16503648 [TBL] [Abstract][Full Text] [Related]
20. Unique cyanide nitrogen-15 nuclear magnetic resonance chemical shift values for cyano-peroxidase complexes. Relevance to the heme active-site structure and mechanism of peroxide activation. Behere DV; Gonzalez-Vergara E; Goff HM Biochim Biophys Acta; 1985 Dec; 832(3):319-25. PubMed ID: 4074752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]