BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 10575019)

  • 1. Activation of presynaptic cAMP-dependent protein kinase is required for induction of cerebellar long-term potentiation.
    Linden DJ; Ahn S
    J Neurosci; 1999 Dec; 19(23):10221-7. PubMed ID: 10575019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β-Adrenergic Receptors/Epac Signaling Increases the Size of the Readily Releasable Pool of Synaptic Vesicles Required for Parallel Fiber LTP.
    Martín R; García-Font N; Suárez-Pinilla AS; Bartolomé-Martín D; Ferrero JJ; Luján R; Torres M; Sánchez-Prieto J
    J Neurosci; 2020 Nov; 40(45):8604-8617. PubMed ID: 33046543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptically evoked glutamate transport currents may be used to detect the expression of long-term potentiation in cerebellar culture.
    Linden DJ
    J Neurophysiol; 1998 Jun; 79(6):3151-6. PubMed ID: 9636115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses.
    Salin PA; Malenka RC; Nicoll RA
    Neuron; 1996 Apr; 16(4):797-803. PubMed ID: 8607997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of RIM1alpha by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber synapses.
    Lonart G; Schoch S; Kaeser PS; Larkin CJ; Südhof TC; Linden DJ
    Cell; 2003 Oct; 115(1):49-60. PubMed ID: 14532002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses requires presynaptic and postsynaptic signaling cascades.
    Wang DJ; Su LD; Wang YN; Yang D; Sun CL; Zhou L; Wang XX; Shen Y
    J Neurosci; 2014 Feb; 34(6):2355-64. PubMed ID: 24501374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice.
    Storm DR; Hansel C; Hacker B; Parent A; Linden DJ
    Neuron; 1998 Jun; 20(6):1199-210. PubMed ID: 9655507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling cascade regulating long-term potentiation of GABA(A) receptor responsiveness in cerebellar Purkinje neurons.
    Kawaguchi SY; Hirano T
    J Neurosci; 2002 May; 22(10):3969-76. PubMed ID: 12019316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-induction of LTP and LTD and its regulation by protein kinases and phosphatases.
    Grey KB; Burrell BD
    J Neurophysiol; 2010 May; 103(5):2737-46. PubMed ID: 20457859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mGluR1-mediated facilitation of long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron.
    Sugiyama Y; Kawaguchi SY; Hirano T
    Eur J Neurosci; 2008 Feb; 27(4):884-96. PubMed ID: 18279362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of silent and weak synapses by cAMP-dependent protein kinase in cultured cerebellar granule neurons.
    Cousin MA; Evans GJ
    J Physiol; 2011 Apr; 589(Pt 8):1943-55. PubMed ID: 21486806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the cAMP pathway decreases early long-term potentiation at CA1 hippocampal synapses.
    Otmakhova NA; Otmakhov N; Mortenson LH; Lisman JE
    J Neurosci; 2000 Jun; 20(12):4446-51. PubMed ID: 10844013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically induced, activity-independent LTD elicited by simultaneous activation of PKG and inhibition of PKA.
    Santschi L; Reyes-Harde M; Stanton PK
    J Neurophysiol; 1999 Sep; 82(3):1577-89. PubMed ID: 10482771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postsynaptic application of a peptide inhibitor of cAMP-dependent protein kinase blocks expression of long-lasting synaptic potentiation in hippocampal neurons.
    Duffy SN; Nguyen PV
    J Neurosci; 2003 Feb; 23(4):1142-50. PubMed ID: 12598602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climbing fiber-evoked endocannabinoid signaling heterosynaptically suppresses presynaptic cerebellar long-term potentiation.
    van Beugen BJ; Nagaraja RY; Hansel C
    J Neurosci; 2006 Aug; 26(32):8289-94. PubMed ID: 16899723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus.
    Lanté F; de Jésus Ferreira MC; Guiramand J; Récasens M; Vignes M
    Hippocampus; 2006; 16(4):345-60. PubMed ID: 16302229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable mossy fiber long-term potentiation requires calcium influx at the granule cell soma, protein synthesis, and microtubule-dependent axonal transport.
    Barnes SJ; Opitz T; Merkens M; Kelly T; von der Brelie C; Krueppel R; Beck H
    J Neurosci; 2010 Sep; 30(39):12996-3004. PubMed ID: 20881117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices.
    Jacoby S; Sims RE; Hartell NA
    J Physiol; 2001 Sep; 535(Pt 3):825-39. PubMed ID: 11559778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PKG and PKA signaling in LTP at GABAergic synapses.
    Nugent FS; Niehaus JL; Kauer JA
    Neuropsychopharmacology; 2009 Jun; 34(7):1829-42. PubMed ID: 19194373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bidirectional synaptic plasticity at nociceptive afferents in the rat central amygdala.
    López de Armentia M; Sah P
    J Physiol; 2007 Jun; 581(Pt 3):961-70. PubMed ID: 17379642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.