BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 10575260)

  • 1. Synaptic responses of neurons in heterotopic gray matter in an animal model of cortical dysgenesis.
    Smith BN; Dudek FE; Roper SN
    Dev Neurosci; 1999 Nov; 21(3-5):365-73. PubMed ID: 10575260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of spontaneous inhibitory synaptic activity in experimental heterotopic gray matter.
    Chen HX; Roper SN
    J Neurophysiol; 2003 Jan; 89(1):150-8. PubMed ID: 12522167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterotopic neurons with altered inhibitory synaptic function in an animal model of malformation-associated epilepsy.
    Calcagnotto ME; Paredes MF; Baraban SC
    J Neurosci; 2002 Sep; 22(17):7596-605. PubMed ID: 12196583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of heterotopic cell clusters in the hippocampus of rats exposed to methylazoxymethanol in utero.
    Baraban SC; Wenzel HJ; Hochman DW; Schwartzkroin PA
    Epilepsy Res; 2000 Apr; 39(2):87-102. PubMed ID: 10759297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hippocampal heterotopia with molecular and electrophysiological properties of neocortical neurons.
    Castro PA; Pleasure SJ; Baraban SC
    Neuroscience; 2002; 114(4):961-72. PubMed ID: 12379251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuregulin blocks synaptic strengthening after epileptiform activity in the rat hippocampus.
    Iyengar SS; Mott DD
    Brain Res; 2008 May; 1208():67-73. PubMed ID: 18387600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initiation and spread of epileptiform discharges in the methylazoxymethanol acetate rat model of cortical dysplasia: functional and structural connectivity between CA1 heterotopia and hippocampus/neocortex.
    Tschuluun N; Wenzel JH; Katleba K; Schwartzkroin PA
    Neuroscience; 2005; 133(1):327-42. PubMed ID: 15893654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological responses in vivo of hippocampal CA1 pyramidal neurons in an animal model of neuronal migration disorders.
    Smith BN; Choi BJ; Roper SN; Dudek FE
    Dev Neurosci; 1999 Nov; 21(3-5):374-84. PubMed ID: 10575261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the {mu} opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala.
    Finnegan TF; Chen SR; Pan HL
    J Pharmacol Exp Ther; 2005 Feb; 312(2):441-8. PubMed ID: 15388784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus.
    Ambrogini P; Lattanzi D; Ciuffoli S; Agostini D; Bertini L; Stocchi V; Santi S; Cuppini R
    Brain Res; 2004 Aug; 1017(1-2):21-31. PubMed ID: 15261095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NPY sensitivity and postsynaptic properties of heterotopic neurons in the MAM model of malformation-associated epilepsy.
    Pentney AR; Baraban SC; Colmers WF
    J Neurophysiol; 2002 Nov; 88(5):2745-54. PubMed ID: 12424309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological and synaptic characterization of transplanted neurons in adult rat motor cortex.
    Santos-Torres J; Heredia M; Riolobos AS; Jiménez-Díaz L; Gómez-Bautista V; de la Fuente A; Criado JM; Navarro-López J; Yajeya J
    J Neurotrauma; 2009 Sep; 26(9):1593-607. PubMed ID: 19522680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serotonergic transmission in the periaqueductal gray matter in relation to aversive behaviour: morphological evidence for direct modulatory effects on identified output neurons.
    Lovick TA; Parry DM; Stezhka VV; Lumb BM
    Neuroscience; 2000; 95(3):763-72. PubMed ID: 10670443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced excitatory and reduced inhibitory synaptic transmission contribute to persistent pain-induced neuronal hyper-responsiveness in anterior cingulate cortex.
    Gong KR; Cao FL; He Y; Gao CY; Wang DD; Li H; Zhang FK; An YY; Lin Q; Chen J
    Neuroscience; 2010 Dec; 171(4):1314-25. PubMed ID: 20951771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function and organization in dysgenic cortex. Case report.
    Preul MC; Leblanc R; Cendes F; Dubeau F; Reutens D; Spreafico R; Battaglia G; Avoli M; Langevin P; Arnold DL; Villemure JG
    J Neurosurg; 1997 Jul; 87(1):113-21. PubMed ID: 9202277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of inhibitory and excitatory synapses between hippocampal neurons in very low density cultures.
    Wilcox KS; Buchhalter J; Dichter MA
    Synapse; 1994 Oct; 18(2):128-51. PubMed ID: 7839312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III-IV of the young rat spinal cord.
    Inquimbert P; Rodeau JL; Schlichter R
    Eur J Neurosci; 2007 Nov; 26(10):2940-9. PubMed ID: 18001289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine D1 and D4 receptor subtypes differentially modulate recurrent excitatory synapses in prefrontal cortical pyramidal neurons.
    Onn SP; Wang XB; Lin M; Grace AA
    Neuropsychopharmacology; 2006 Feb; 31(2):318-38. PubMed ID: 16052247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors.
    Nisenbaum ES; Berger TW; Grace AA
    Synapse; 1993 Jul; 14(3):221-42. PubMed ID: 8105549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental change of GABAergic postsynaptic current in rat periaqueductal gray.
    Hahm ET; Lee JJ; Min BI; Cho YW
    Neurosci Lett; 2005 May 20-27; 380(1-2):187-92. PubMed ID: 15854775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.