These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 10576070)

  • 1. Improving geometric model construction for blood flow modeling.
    Wang KC; Dutton RW; Taylor CA
    IEEE Eng Med Biol Mag; 1999; 18(6):33-9. PubMed ID: 10576070
    [No Abstract]   [Full Text] [Related]  

  • 2. Reconstruction of blood flow patterns in human arteries.
    Xu XY; Long Q; Collins MW; Bourne M; Griffith TM
    Proc Inst Mech Eng H; 1999; 213(5):411-21. PubMed ID: 10581968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches.
    Lee D; Chen JY
    J Biomech; 2002 Aug; 35(8):1115-22. PubMed ID: 12126670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T; Rodgers VG; Frazin LJ; Chandran KB
    J Biomech; 2000 Jun; 33(6):717-28. PubMed ID: 10807993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions.
    Pedersen EM; Sung HW; Burlson AC; Yoganathan AP
    J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A venous pulse Doppler catheter-tip flowmeter for measuring arterial blood velocity, flow and diameter in deep arteries.
    Nealeigh RC; Miller CW
    Biomed Sci Instrum; 1975; 11():7-10. PubMed ID: 123798
    [No Abstract]   [Full Text] [Related]  

  • 7. 4D model of hemodynamics in the abdominal aorta.
    Zbicinski I; Veshkina N; StefaƄczyk L
    Biomed Mater Eng; 2015; 26 Suppl 1():S257-64. PubMed ID: 26406010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of time harmonic blood flow in the Mesenteric artery: comparing finite element and lattice Boltzmann methods.
    Axner L; Hoekstra AG; Jeays A; Lawford P; Hose R; Sloot PM
    Biomed Eng Online; 2009 Oct; 8():23. PubMed ID: 19799782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Calculation of the linear blood flow velocity in the aorta and its branches].
    Orlov AG
    Kardiologiia; 1967 Aug; 7(8):112-5. PubMed ID: 4891754
    [No Abstract]   [Full Text] [Related]  

  • 10. Automatic model-based contour detection and blood flow quantification in small vessels with velocity encoded magnetic resonance imaging.
    Box FM; Spilt A; Van Buchem MA; van der Geest RJ; Reiber JH
    Invest Radiol; 2003 Sep; 38(9):567-77. PubMed ID: 12960526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of image resolution on vessel signal in high-resolution magnetic resonance angiography.
    Parker DL; Parker DJ; Blatter DD; Du YP; Goodrich KC
    J Magn Reson Imaging; 1996; 6(4):632-41. PubMed ID: 8835957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic enhancement, animation, and segmentation of flow in peripheral arteries from MR phase-shift velocity mapping.
    Mohiaddin RH; Yang GZ; Burger P; Firmin DN; Longmore DB
    J Comput Assist Tomogr; 1992; 16(2):176-81. PubMed ID: 1545013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional visualization of velocity profiles in the porcine abdominal aortic trifurcation.
    Pedersen EM; Hjortdal JO; Hjortdal VE; Nygaard H; Hasenkam M; Paulsen PK
    J Vasc Surg; 1992 Jan; 15(1):194-204. PubMed ID: 1530825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The numerical simulation of pulsatile flow in a tapered blood vessel].
    Qiu L; Fan Y; Dong B; Yuan Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):558-61. PubMed ID: 15357431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational blood flow modelling: errors associated with reconstructing finite element models from magnetic resonance images.
    Moore JA; Steinman DA; Ethier CR
    J Biomech; 1998 Feb; 31(2):179-84. PubMed ID: 9593213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computer simulation of the blood flow at the aortic bifurcation with flexible walls.
    Lou Z; Yang WJ
    J Biomech Eng; 1993 Aug; 115(3):306-15. PubMed ID: 8231147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in geometry and shear rate distribution in casts of human aortic bifurcations.
    Mark FF; Bargeron CB; Deters OJ; Friedman MH
    J Biomech; 1989; 22(6-7):577-82. PubMed ID: 2530232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulse wave reflections at the aorto-iliac junction.
    Li JK
    Angiology; 1985 Aug; 36(8):516-21. PubMed ID: 4037418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Modeling of intraorgan arterial vasculatures. I. A stationary blood flow at low Reynolds numbers].
    Kizilova NN
    Biofizika; 2006; 51(4):733-7. PubMed ID: 16909853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study on the effect of steady axial flow development in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T; Rodgers VG; Frazin LJ; Chandran KB
    J Biomech; 1998 Nov; 31(11):995-1007. PubMed ID: 9880056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.