BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10577488)

  • 1. Energy conservation in aerobically grown Staphylococcus aureus.
    Tynecka Z; Szcześniak Z; Malm A; Los R
    Res Microbiol; 1999 Oct; 150(8):555-66. PubMed ID: 10577488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium-sensitive targets in the aerobic respiratory metabolism of Staphylococcus aureus.
    Tynecka Z; Malm A
    J Basic Microbiol; 1996; 36(6):447-52. PubMed ID: 8956492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetic basis of cadmium toxicity in Staphylococcus aureus.
    Tynecka Z; Malm A
    Biometals; 1995 Jul; 8(3):197-204. PubMed ID: 7647516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CtaM Is Required for Menaquinol Oxidase aa3 Function in Staphylococcus aureus.
    Hammer ND; Schurig-Briccio LA; Gerdes SY; Gennis RB; Skaar EP
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic insensitivity to cadmium of the L-lactate oxidizing system in staphylococcoccus aureus.
    Tynecka Z; Malm A
    FEMS Microbiol Lett; 1995 Jun; 129(1):11-5. PubMed ID: 7781984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells.
    Dibrov PA; Lazarova RL; Skulachev VP; Verkhovskaya ML
    Biochim Biophys Acta; 1986 Jul; 850(3):458-65. PubMed ID: 2942186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli.
    Anraku Y; Kin E; Tanaka Y
    J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy requirements for the action of staphylococcin 1580 in Staphyloccus aureus.
    Weerkamp A; Geerts W; Vogels GD
    Biochim Biophys Acta; 1978 Mar; 539(3):372-85. PubMed ID: 204362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cd(2+) extrusion by P-type Cd(2+)-ATPase of Staphylococcus aureus 17810R via energy-dependent Cd(2+)/H(+) exchange mechanism.
    Tynecka Z; Malm A; Goś-Szcześniak Z
    Biometals; 2016 Aug; 29(4):651-63. PubMed ID: 27323956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-Oxoglutarate transport system in Staphylococcus aureus.
    Tynecka Z; Korona-Głowniak I; Loś R
    Arch Microbiol; 2001 Jul; 176(1-2):143-50. PubMed ID: 11479714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy donor-dependent effect of Cd2+ on [14C]glutamate transport in Staphylococcus aureus.
    Malm A; Tynecka Z
    Acta Biochim Pol; 1990; 37(1):117-20. PubMed ID: 1982385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate-dependent cadmium toxicity affecting energy-linked K+/86Rb transport in Staphylococcus aureus.
    Tynecka Z; Malm A; Kosikowska U; Kot A
    Folia Microbiol (Praha); 1998; 43(6):617-22. PubMed ID: 10069010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. D-lactate oxidation and generation of the proton electrochemical gradient in membrane vesicles from Escherichia coli GR19N and in proteoliposomes reconstituted with purified D-lactate dehydrogenase and cytochrome o oxidase.
    Matsushita K; Kaback HR
    Biochemistry; 1986 May; 25(9):2321-7. PubMed ID: 3013300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of oxygen on glucose metabolism: utilization of lactate in Staphylococcus aureus as revealed by in vivo NMR studies.
    Ferreira MT; Manso AS; Gaspar P; Pinho MG; Neves AR
    PLoS One; 2013; 8(3):e58277. PubMed ID: 23472168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino Acid Catabolism in
    Halsey CR; Lei S; Wax JK; Lehman MK; Nuxoll AS; Steinke L; Sadykov M; Powers R; Fey PD
    mBio; 2017 Feb; 8(1):. PubMed ID: 28196956
    [No Abstract]   [Full Text] [Related]  

  • 17. Energy coupling mechanisms in host-grown Mycobacterium lepraemurium.
    Ishaque M; Adapoe C; Kato L
    Can J Biochem; 1981 Feb; 59(2):75-82. PubMed ID: 7016267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation.
    Dawson AG; Chappell JB
    Biochem J; 1978 Feb; 170(2):395-405. PubMed ID: 205211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the menaquinol binding loop of mycobacterial cytochrome bd oxidase.
    Harikishore A; Chong SSM; Ragunathan P; Bates RW; Grüber G
    Mol Divers; 2021 Feb; 25(1):517-524. PubMed ID: 31939065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging.
    Magistretti PJ; Pellerin L
    Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1155-63. PubMed ID: 10466143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.