These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10577488)

  • 21. Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress.
    Gigliobianco T; Lakaye B; Wins P; El Moualij B; Zorzi W; Bettendorff L
    BMC Microbiol; 2010 May; 10():148. PubMed ID: 20492686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. L-glutamate decreases glucose utilization by rat cortical astrocytes.
    Liao SL; Chen CJ
    Neurosci Lett; 2003 Sep; 348(2):81-4. PubMed ID: 12902023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria.
    Davey GP; Clark JB
    J Neurochem; 1996 Apr; 66(4):1617-24. PubMed ID: 8627318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy generation mechanisms in the in vitro-grown Mycobacterium lepraemurium.
    Ishaque M
    Int J Lepr Other Mycobact Dis; 1992 Mar; 60(1):61-70. PubMed ID: 1318345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ
    Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium transport in bovine sperm mitochondria: effect of substrates and phosphate.
    Breitbart H; Wehbie R; Lardy HA
    Biochim Biophys Acta; 1990 Jul; 1026(1):57-63. PubMed ID: 1696124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of carbonyl cyanide 3-chlorophenylhydrazone with cytochrome c oxidase.
    Bona M; Antalík M; Gazová Z; Kuchár A; Dadák V; Podhradský D
    Gen Physiol Biophys; 1993 Dec; 12(6):533-42. PubMed ID: 8070645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of O2 in regulation of lactate dynamics during hypoxia: mathematical model and analysis.
    Cabrera ME; Saidel GM; Kalhan SC
    Ann Biomed Eng; 1998; 26(1):1-27. PubMed ID: 10355547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Na(+)-translocating cytochrome bo terminal oxidase from Vitreoscilla: some parameters of its Na+ pumping and orientation in synthetic vesicles.
    Park C; Moon JY; Cokic P; Webster DA
    Biochemistry; 1996 Sep; 35(36):11895-900. PubMed ID: 8794772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial cytochrome c oxidase and control of energy metabolism: measurements in suspensions of isolated mitochondria.
    Wilson DF; Harrison DK; Vinogradov A
    J Appl Physiol (1985); 2014 Dec; 117(12):1424-30. PubMed ID: 25324517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extramitochondrial energy production in platelets.
    Ravera S; Signorello MG; Bartolucci M; Ferrando S; Manni L; Caicci F; Calzia D; Panfoli I; Morelli A; Leoncini G
    Biol Cell; 2018 May; 110(5):97-108. PubMed ID: 29537672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mimicking respiratory phosphorylation using purified enzymes.
    von Ballmoos C; Biner O; Nilsson T; Brzezinski P
    Biochim Biophys Acta; 2016 Apr; 1857(4):321-31. PubMed ID: 26707617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stability of the adenosine 5'-triphosphate pool in Coxiella burnetii: influence of pH and substrate.
    Hackstadt T; Williams JC
    J Bacteriol; 1981 Nov; 148(2):419-25. PubMed ID: 6117546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Energy metabolism of isolated hepatocytes at various levels of oxidative phosphorylation uncoupling].
    Toshchakov VIu; Morozova GI; Anishchenko NA
    Biokhimiia; 1991 Dec; 56(12):2131-9. PubMed ID: 1839659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The microbial metabolism of C1 compounds. Oxidative phosphorylation in membrane preparations of Pseudomonas AM1.
    Netrusov AI; Anthony C
    Biochem J; 1979 Feb; 178(2):353-60. PubMed ID: 220960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Choosing the right substrate.
    Leverve X; Batandier C; Fontaine E
    Novartis Found Symp; 2007; 280():108-21; discussion 121-7, 160-4. PubMed ID: 17380791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygen-dependent lactate utilization by Actinomyces viscosus and Actinomyces naeslundii.
    van der Hoeven JS; van den Kieboom CW
    Oral Microbiol Immunol; 1990 Aug; 5(4):223-5. PubMed ID: 2082247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative phosphorylation supported by an alternative respiratory pathway in mitochondria from Euglena.
    Moreno-Sánchez R; Covián R; Jasso-Chávez R; Rodríguez-Enríquez S; Pacheco-Moisés F; Torres-Márquez ME
    Biochim Biophys Acta; 2000 Apr; 1457(3):200-10. PubMed ID: 10773165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.
    Hertz L; Peng L; Dienel GA
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):219-49. PubMed ID: 16835632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Branched respiratory chain in aerobically grown Staphylococcus aureus--oxidation of ethanol by cells and protoplasts.
    Artzatbanov VYu ; Petrov VV
    Arch Microbiol; 1990; 153(6):580-4. PubMed ID: 2369263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.