These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10577488)

  • 41. Energy sources for glutamate neurotransmission in the retina: absence of the aspartate/glutamate carrier produces reliance on glycolysis in glia.
    Xu Y; Ola MS; Berkich DA; Gardner TW; Barber AJ; Palmieri F; Hutson SM; LaNoue KF
    J Neurochem; 2007 Apr; 101(1):120-31. PubMed ID: 17394462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. NBCe1 mediates the regulation of the NADH/NAD
    Köhler S; Winkler U; Sicker M; Hirrlinger J
    Glia; 2018 Oct; 66(10):2233-2245. PubMed ID: 30208253
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of L-glutamate/D-aspartate and monensin on lactic acid production in retina and cultured retinal Müller cells.
    Winkler BS; Sauer MW; Starnes CA
    J Neurochem; 2004 Apr; 89(2):514-25. PubMed ID: 15056294
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The respiratory chain of Corynebacterium glutamicum.
    Bott M; Niebisch A
    J Biotechnol; 2003 Sep; 104(1-3):129-53. PubMed ID: 12948635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of lactate on the synaptic potential, energy metabolism, calcium homeostasis and extracellular glutamate concentration in the dentate gyrus of the hippocampus from guinea-pig.
    Takata T; Sakurai T; Yang B; Yokono K; Okada Y
    Neuroscience; 2001; 104(2):371-8. PubMed ID: 11377841
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The electron transport chain of Bacterionema matruchotii.
    Broom MF; Shepherd MG; Sullivan PA
    Can J Microbiol; 1981 Oct; 27(10):1106-13. PubMed ID: 6274495
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The key role of glutamate 172 in the mechanism of type II NADH:quinone oxidoreductase of Staphylococcus aureus.
    Sousa FM; Sena FV; Batista AP; Athayde D; Brito JA; Archer M; Oliveira ASF; Soares CM; Catarino T; Pereira MM
    Biochim Biophys Acta Bioenerg; 2017 Oct; 1858(10):823-832. PubMed ID: 28801048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF; Vinogradov SA
    J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Elevated lactate suppresses neuronal firing in vivo and inhibits glucose metabolism in hippocampal slice cultures.
    Gilbert E; Tang JM; Ludvig N; Bergold PJ
    Brain Res; 2006 Oct; 1117(1):213-23. PubMed ID: 16996036
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The enzyme activity of energy metabolism in antibiotic-resistant staphylococci].
    Vinnikov AI; Syrtsov VV; Gavriliuk VG; Nesterenko LN
    Mikrobiol Zh (1978); 1989; 51(1):22-5. PubMed ID: 2725354
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of Cd2+ on ATP synthesis coupled to electron transfer in cadmium-resistant and -sensitive Staphylococcus aureus.
    Tynecka Z; Malm A; Zajac J
    Acta Biochim Pol; 1990; 37(1):121-4. PubMed ID: 2087901
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Induced mitochondrial failure in the feline brain: implications for understanding acute post-traumatic metabolic events.
    Clausen T; Zauner A; Levasseur JE; Rice AC; Bullock R
    Brain Res; 2001 Jul; 908(1):35-48. PubMed ID: 11457429
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for an alternative and non-phosphorylating pathway for NADH reoxidation in a yeast strain resistant to glucose repression.
    Camougrand NM; Caubet RB; Guerin MG
    Eur J Biochem; 1983 Sep; 135(2):367-71. PubMed ID: 6309524
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish.
    Jia S; Li X; Zheng S; Wu G
    Amino Acids; 2017 Dec; 49(12):2053-2063. PubMed ID: 28852872
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mitochondrial transport processes and oxidation of NADH by hypotonically-treated boar spermatozoa.
    Calvin J; Tubbs PK
    Eur J Biochem; 1978 Aug; 89(1):315-20. PubMed ID: 212270
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential utilization of two ATP-generating pathways is regulated by p53.
    Assaily W; Benchimol S
    Cancer Cell; 2006 Jul; 10(1):4-6. PubMed ID: 16843260
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrogen oxidation by membranes from autotrophically grown Alcaligenes eutrophus H16: role of the cyanide-resistant pathway in energy transduction.
    Komen R; Schmidt K; Zannoni D
    Arch Microbiol; 1996 Jun; 165(6):418-20. PubMed ID: 8661937
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Na(+)-coupled ATP synthesis in a mutant of Vibrio parahaemolyticus lacking H(+)-translocating ATPase activity.
    Sakai-Tomita Y; Tsuda M; Tsuchiya T
    Biochem Biophys Res Commun; 1991 Aug; 179(1):224-8. PubMed ID: 1831976
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The distribution of electron flow in the branched respiratory chain of Micrococcus luteus.
    Artzatbanov VYu ; Ostrovsky DN
    Biochem J; 1990 Mar; 266(2):481-6. PubMed ID: 2156496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.