These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10578096)

  • 1. Modeling and simulation of competition between two microorganisms for a single inhibitory substrate in a biofilm reactor.
    Soda S; Heinzle E; Fujita M
    Biotechnol Bioeng; 1999; 66(4):258-64. PubMed ID: 10578096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuum heterogeneous biofilm model--a simple and accurate method for effectiveness factor determination.
    Gonzo EE; Wuertz S; Rajal VB
    Biotechnol Bioeng; 2012 Jul; 109(7):1779-90. PubMed ID: 22252922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition between planktonic and fixed microorganisms during the start-up of methanogenic biofilm reactors.
    Cresson R; Escudié R; Steyer JP; Delgenès JP; Bernet N
    Water Res; 2008 Feb; 42(3):792-800. PubMed ID: 17825351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm development in a membrane-aerated biofilm reactor: effect of flow velocity on performance.
    Casey E; Glennon B; Hamer G
    Biotechnol Bioeng; 2000 Feb; 67(4):476-86. PubMed ID: 10620763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simplified model for the steady-state biofilm-activated sludge reactor.
    Fouad M; Bhargava R
    J Environ Manage; 2005 Feb; 74(3):245-53. PubMed ID: 15644264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions.
    Horn H; Reiff H; Morgenroth E
    Biotechnol Bioeng; 2003 Mar; 81(5):607-17. PubMed ID: 12514810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation.
    Brányik T; Vicente AA; Kuncová G; Podrazký O; Dostálek P; Teixeira JA
    Biotechnol Prog; 2004; 20(6):1733-40. PubMed ID: 15575706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating trends in biofilm density using the UMCCA model.
    Laspidou CS; Rittmann BE
    Water Res; 2004; 38(14-15):3362-72. PubMed ID: 15276753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of biofilm growth, substrate conversion and mass transfer under different hydrodynamic conditions.
    Horn H; Wäsche S; Hempel DC
    Water Sci Technol; 2002; 46(1-2):249-52. PubMed ID: 12216631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-stratification controlled biofilm (ReSCoBi) for completely autotrophic nitrogen removal: the effect of co- versus counter-diffusion on reactor performance.
    Terada A; Lackner S; Tsuneda S; Smets BF
    Biotechnol Bioeng; 2007 May; 97(1):40-51. PubMed ID: 17013935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of detachment on substrate removal and microbial ecology in a heterotrophic/autotrophic biofilm.
    Elenter D; Milferstedt K; Zhang W; Hausner M; Morgenroth E
    Water Res; 2007 Dec; 41(20):4657-71. PubMed ID: 17655911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: modeling and experimental comparison.
    Wang R; Terada A; Lackner S; Smets BF; Henze M; Xia S; Zhao J
    Water Res; 2009 Jun; 43(10):2699-709. PubMed ID: 19375773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of an aerobic biofilm reactor with double-limiting substrate kinetics: bifurcational and dynamical analysis.
    Olivieri G; Russo ME; Marzocchella A; Salatino P
    Biotechnol Prog; 2011; 27(6):1599-613. PubMed ID: 21956900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment.
    Duddu R; Chopp DL; Moran B
    Biotechnol Bioeng; 2009 May; 103(1):92-104. PubMed ID: 19213021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general description of detachment for multidimensional modelling of biofilms.
    Xavier Jde B; Picioreanu C; van Loosdrecht MC
    Biotechnol Bioeng; 2005 Sep; 91(6):651-69. PubMed ID: 15918167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The characteristics of the biofilm fixed inside porous medium by sequencing batch reactor.
    Hoshi K; Deguchi H
    Water Sci Technol; 2002; 46(1-2):261-5. PubMed ID: 12216634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual-growth kinetic model for biological wastewater reactors.
    Chang HT; Parulekar SJ; Ahmed M
    Biotechnol Prog; 2005; 21(2):423-31. PubMed ID: 15801781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads.
    Picioreanu C; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1998 Mar; 57(6):718-31. PubMed ID: 10099251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifurcational and dynamical analysis of a continuous biofilm reactor.
    Russo ME; Maffettone PL; Marzocchella A; Salatino P
    J Biotechnol; 2008 Jun; 135(3):295-303. PubMed ID: 18511142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.