BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10578463)

  • 1. [Novel chromophore substrates of aspartyl proteinases].
    Litvinova OV; Balandina GN
    Bioorg Khim; 1999 Aug; 25(8):581-3. PubMed ID: 10578463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Determination of activity of aspartic proteinases by cleavage of new chromogenic substrates].
    Litvinova OV; Balandina GN; Stepanov VM
    Bioorg Khim; 1998 Mar; 24(3):175-8. PubMed ID: 9612558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Synthesis of new chromogenic substrates for aspartyl proteases].
    Litvinova OV; Balandina GN; Stepanov VM
    Bioorg Khim; 1998 Jan; 24(1):10-5. PubMed ID: 9551195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2.
    Dunn BM; Valler MJ; Rolph CE; Foundling SI; Jimenez M; Kay J
    Biochim Biophys Acta; 1987 Jun; 913(2):122-30. PubMed ID: 3109484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A study of aspartyl proteases using intramolecularly quenched fluorogenic peptide substrates].
    Filippova IIu; Lysogorskaia EN; Lavrenova GI; Oksenoĭt ES; Suvorov LI; Starovoĭtova VV
    Bioorg Khim; 2000 Mar; 26(3):192-6. PubMed ID: 10816817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat.
    Balbaa M; Cunningham A; Hofmann T
    Arch Biochem Biophys; 1993 Nov; 306(2):297-303. PubMed ID: 8215428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chromogenic combinatorial peptide libraries.
    Beyer BB; Johnson JV; Chung AY; Li T; Madabushi A; Agbandje-McKenna M; McKenna R; Dame JB; Dunn BM
    Biochemistry; 2005 Feb; 44(6):1768-79. PubMed ID: 15697202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Enzymatic synthesis of peptides of arginine-chromophore substrates of metalloproteinases and carboxypeptidases].
    Iusupova MP; Kotlova EK; Timokhina EA; Stepanov VM
    Bioorg Khim; 1995 Jan; 21(1):33-8. PubMed ID: 7710422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteolytic activation of recombinant pro-memapsin 2 (pro-beta-secretase) studied with new fluorogenic substrates.
    Ermolieff J; Loy JA; Koelsch G; Tang J
    Biochemistry; 2000 Oct; 39(40):12450-6. PubMed ID: 11015226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the P1' substrate specificities of pepsin A and chymosin.
    Kageyama H; Ueda H; Tezuka T; Ogasawara A; Narita Y; Kageyama T; Ichinose M
    J Biochem; 2010 Feb; 147(2):167-74. PubMed ID: 19819898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trypanosoma cruzi: isolation and characterization of aspartyl proteases.
    Pinho RT; Beltramini LM; Alves CR; De-Simone SG
    Exp Parasitol; 2009 Jun; 122(2):128-33. PubMed ID: 19217906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificities and kinetic properties of proteinase A from the yeast Saccharomyces cerevisiae and the development of a novel substrate.
    Kondo H; Shibano Y; Amachi T; Cronin N; Oda K; Dunn BM
    J Biochem; 1998 Jul; 124(1):141-7. PubMed ID: 9644256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and hydrolysis by arginyl-hydrolases of p-nitroanilide chromogenic substrates containing polyethylene glycol and D-gluconyl moieties.
    Juliano MA; Juliano L; Biondi L; Rocchi R
    Pept Res; 1991; 4(6):334-9. PubMed ID: 1821168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling.
    Scarborough PE; Guruprasad K; Topham C; Richo GR; Conner GE; Blundell TL; Dunn BM
    Protein Sci; 1993 Feb; 2(2):264-76. PubMed ID: 8443603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic synthesis of chromogenic substrates for Glu,Asp-specific proteinases.
    Milgotina EI; Shcheglov AS; Lapa GB; Chestukhina GG; Voyushina TL
    J Pept Res; 2001 Jul; 58(1):12-6. PubMed ID: 11454165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive, soluble chromogenic substrates for HIV-1 proteinase.
    Richards AD; Phylip LH; Farmerie WG; Scarborough PE; Alvarez A; Dunn BM; Hirel PH; Konvalinka J; Strop P; Pavlickova L
    J Biol Chem; 1990 May; 265(14):7733-6. PubMed ID: 2186027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificities of pepstatin-insensitive carboxyl proteinases from gram-negative bacteria.
    Ito M; Dunn BM; Oda K
    J Biochem; 1996 Oct; 120(4):845-50. PubMed ID: 8947851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR study of the inhibition of pepsin by glyoxal inhibitors: mechanism of tetrahedral intermediate stabilization by the aspartyl proteases.
    Cosgrove S; Rogers L; Hewage CM; Malthouse JP
    Biochemistry; 2007 Oct; 46(39):11205-15. PubMed ID: 17824620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, chemical synthesis and kinetic studies of trypsin chromogenic substrates based on the proteinase binding loop of Cucurbita maxima trypsin inhibitor (CMTI-III).
    Lesner A; Brzozowski K; Kupryszewski G; Rolka K
    Biochem Biophys Res Commun; 2000 Mar; 269(1):81-4. PubMed ID: 10694481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic peptides for chymosin and pepsin assays: pH effect and pepsin independent-determination in mixtures.
    Salesse R; Garnier J
    J Dairy Sci; 1976 Jul; 59(7):1215-21. PubMed ID: 7580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.