These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 10578505)
1. In vitro properties of an in situ forming gel for the parenteral delivery of macromolecular drugs. Joshi R; Robinson DH; Himmelstein KJ Pharm Dev Technol; 1999; 4(4):515-22. PubMed ID: 10578505 [TBL] [Abstract][Full Text] [Related]
2. In vivo properties of an in situ forming gel for parenteral delivery of macromolecular drugs. Joshi R; Arora V; Desjardins JP; Robinson D; Himmelstein KJ; Iversen PL Pharm Res; 1998 Aug; 15(8):1189-95. PubMed ID: 9706048 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo release of albumin using a biodegradable MPEG-PCL diblock copolymer as an in situ gel-forming carrier. Hyun H; Kim YH; Song IB; Lee JW; Kim MS; Khang G; Park K; Lee HB Biomacromolecules; 2007 Apr; 8(4):1093-100. PubMed ID: 17326678 [TBL] [Abstract][Full Text] [Related]
5. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers. Nam K; Watanabe J; Ishihara K Int J Pharm; 2004 May; 275(1-2):259-69. PubMed ID: 15081156 [TBL] [Abstract][Full Text] [Related]
6. Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment. Srichan T; Phaechamud T AAPS PharmSciTech; 2017 Jan; 18(1):194-201. PubMed ID: 26951505 [TBL] [Abstract][Full Text] [Related]
7. Ultrafast in situ forming poly(ethylene glycol)-poly(amido amine) hydrogels with tunable drug release properties via controllable degradation rates. Buwalda SJ; Bethry A; Hunger S; Kandoussi S; Coudane J; Nottelet B Eur J Pharm Biopharm; 2019 Jun; 139():232-239. PubMed ID: 30954658 [TBL] [Abstract][Full Text] [Related]
8. In situ gel formulations for gene delivery: release and myotoxicity studies. Ismail FA; Napaporn J; Hughes JA; Brazeau GA Pharm Dev Technol; 2000; 5(3):391-7. PubMed ID: 10934739 [TBL] [Abstract][Full Text] [Related]
9. pH-triggered release of macromolecules from spray-dried polymethacrylate microparticles. Kohane DS; Anderson DG; Yu C; Langer R Pharm Res; 2003 Oct; 20(10):1533-8. PubMed ID: 14620503 [TBL] [Abstract][Full Text] [Related]
10. Solute transport analysis in pH-responsive, complexing hydrogels of poly(methacrylic acid-g-ethylene glycol). Lowman AM; Peppas NA J Biomater Sci Polym Ed; 1999; 10(9):999-1009. PubMed ID: 10574613 [TBL] [Abstract][Full Text] [Related]
11. Non-covalent nano-adducts of co-poly(ester amide) and poly(ethylene glycol): preparation, characterization and model drug-release studies. Legashvili I; Nepharidze N; Katsarava R; Sannigrahi B; Khan IM J Biomater Sci Polym Ed; 2007; 18(6):673-85. PubMed ID: 17623550 [TBL] [Abstract][Full Text] [Related]
12. Temperature/pH Responsive Hydrogels Based on Poly(ethylene glycol) and Functionalized Poly(e-caprolactone) Block Copolymers for Controlled Delivery of Macromolecules. Nikouei NS; Ghasemi N; Lavasanifar A Pharm Res; 2016 Feb; 33(2):358-66. PubMed ID: 26415645 [TBL] [Abstract][Full Text] [Related]
13. Optimization of topical gels with betamethasone dipropionate: selection of gel forming and optimal cosolvent system. Băiţan M; Lionte M; Moisuc L; Gafiţanu E Rev Med Chir Soc Med Nat Iasi; 2011; 115(2):601-5. PubMed ID: 21870764 [TBL] [Abstract][Full Text] [Related]
14. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. Zentner GM; Rathi R; Shih C; McRea JC; Seo MH; Oh H; Rhee BG; Mestecky J; Moldoveanu Z; Morgan M; Weitman S J Control Release; 2001 May; 72(1-3):203-15. PubMed ID: 11389999 [TBL] [Abstract][Full Text] [Related]
15. Subcellular Fate of a Fluorescent Cholesterol-Poly(ethylene glycol) Conjugate: An Excellent Plasma Membrane Imaging Reagent. Chen X; Zhang X; Wang HY; Chen Z; Wu FG Langmuir; 2016 Oct; 32(39):10126-10135. PubMed ID: 27597442 [TBL] [Abstract][Full Text] [Related]
16. Influence of end groups on in vitro release and biological activity of lysozyme from a phase-sensitive smart polymer-based in situ gel forming controlled release drug delivery system. Chhabra S; Sachdeva V; Singh S Int J Pharm; 2007 Sep; 342(1-2):72-7. PubMed ID: 17560056 [TBL] [Abstract][Full Text] [Related]
17. A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: An application for bladder cancer treatment. Vila-Caballer M; Codolo G; Munari F; Malfanti A; Fassan M; Rugge M; Balasso A; de Bernard M; Salmaso S J Control Release; 2016 Sep; 238():31-42. PubMed ID: 27444816 [TBL] [Abstract][Full Text] [Related]
19. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition. Nam K; Watanabe J; Ishihara K Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127 [TBL] [Abstract][Full Text] [Related]
20. Development of a novel formulation containing poly(d,l-lactide-co-glycolide) microspheres dispersed in PLGA-PEG-PLGA gel for sustained delivery of ganciclovir. Duvvuri S; Janoria KG; Mitra AK J Control Release; 2005 Nov; 108(2-3):282-93. PubMed ID: 16229919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]